Problem A. Length of a plane curve.

(2) 10.5 (3) 6a (4) 12
(5) \(\frac{8}{27}(10\sqrt{10} - 1)\) (6) \(\frac{14}{3}\)
(7) \(\frac{53}{6}\) (8) \(\frac{123}{32}\) (9) \(\frac{4}{27}(10\sqrt{10} - 1)\)
(10) \(\frac{a\pi^2}{8}\) (11) 8 (12) 12 (13) \(\frac{21}{2}\)
(14) \(\frac{27}{20}\) (15) \(\frac{19}{3}\) (16) \(f(x) = a \pm x\sqrt{A^2 - 1}, \ |A| \geq 1\)
(17) No

Problem B. Surface area.

(2) \(4\pi^2r^2\) (3) \(99\pi/2\) (4) \(\frac{\pi}{27}(10\sqrt{10} - 1)\)
(5) \(\frac{\pi}{6}(17\sqrt{17} - 1)\) (6) \(1823\pi/18\) (7) \(253\pi/20\)
(8) \(\frac{2\pi}{3}(2\sqrt{2} - 1)\) (9) \(12\pi a^2/5\) (10) \(\frac{2\pi}{3}(26\sqrt{26} - 2\sqrt{2})\)
(11) \(56\pi\sqrt{3}/5\) (12) \(424\pi/15\) (13) \(153\pi/40\)

Problem C. Center of mass.

(1) At the intersection of the lines through each vertex which are perpendicular to the opposite side.

(2) At \((0, (2/\pi)r, 0)\) if the center is at \((0, 0)\) and the \(y\)-axis cuts the semicircle in half.

(3) At \((0, (8/15)r, 0)\) if the hemisphere is sitting on the \(x-z\) plane with its apex at \((0, r, 0)\).

(4) \((4a/3\pi, 4a/3\pi)\) (5) \((0, (2/5)h^2)\) (6) \((2a/3(4 - \pi), 2a/3(4 - \pi))\)
(7) $(\pi/2, \pi/8)$ (8) $(2/5, 1)$ (9) $(3/7)h$ (10) $(3/5)h$

(11) On the axis of the cone $3h/4$ from the vertex.

(12) On the axis of the cone $3h/5$ from the vertex.

(13) At $(0, \pi r/4)$ if the semicircle is positioned as in (2).

(14) At $(0, (3/8)r, 0)$ if the hemisphere is positioned as in (3).

(15) At $(0, (1/2)r, 0)$ if the hemisphere is positioned as in (3).

(16) $(0, 2c^2/5)$ (17) $(16/105, 8/15)$ (18) $(0, 12/5)$

(19) $(1, -3/5)$ (20) $(3/5, 1)$

(21) On the axis of the cone $3h/4$ from the vertex.

(22) $(0, 8/3)$ (23) $(4/5, 0)$

(24) On the axis of the cone $2h/3$ from the vertex.

(25) $(-r, 3r/(2 + \pi))$ (26) $(17\sqrt{17} - 1)/12$

(27) $(2r/\pi, 2r/\pi)$

Problem B. Average value of a function.

(2) $50\frac{1}{2}$ (3) 126 (4) 117

(5) 21536939630755577663107.46 (10) $2/\pi$ (11) 0

(12) $1/2$ (13) $1/2$ (14) $49/12$ (15) $1/2$

(16) $\alpha \left(\frac{a + b}{2}\right) + \beta$ (17a) 200 cases (17b) 1 dollar per day

(18) $\frac{a}{3}(3\sqrt{3} - 1)$ (19a) $\frac{2}{3}b^2$ (19b) $\frac{2}{3}b$

(20a) 72 (20b) $82\frac{2}{3}$ (21) $50 + 28/\pi$