Homework 6: Due October 17, 2007

To grade: 6, 10, 17.

1. Define group, subgroup, coset, G/H and normal subgroup.

2. Make a list of the groups with ≤ 10 elements their subgroups and the corresponding G/H.

3. Show that $5\mathbb{Z}$ is a subgroup of \mathbb{Z} and explicitly determine the cosets of $5\mathbb{Z}$ in \mathbb{Z}.

4. Let G be a group, H a subgroup and let $g \in G$ and $h \in H$. Show that $gH = ghH$.

5. Let G be a group, H a subgroup and let $x, g \in G$. Show that $x \in gH$ if and only if $gH = xH$.

6. Let G be a group and H a subgroup. Show that G/H is a partition of G.

7. Let G be a group, H a subgroup and let $g_1, g_2 \in G$. Show that $\text{Card}(g_1H) = \text{Card}(g_2H)$.

8. Let H be a subgroup of a group G. Show that $\text{Card}(G) = \text{Card}(G/H)\text{Card}(H)$.

9. Define integral domain and field of fractions and give examples.

10. Let R be an integral domain and let \mathbb{F} be its field of fractions. Show that the operation $+ : \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ is well defined.

11. Let R be an integral domain and let \mathbb{F} be its field of fractions. Show that the operation $\cdot : \mathbb{F} \times \mathbb{F} \rightarrow \mathbb{F}$ is well defined.

12. Let R be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a group.

13. Let R be an integral domain and let \mathbb{F} be its field of fractions. Define abelian group and show that \mathbb{F} is an abelian group.
14. Let R be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a ring.

15. Let R be an integral domain and let \mathbb{F} be its field of fractions. Show that \mathbb{F} is a field.

16. Let H be a subgroup of a group G. Show that if the operation on G/H given by
 \[(g_1H)(g_2H) = g_1g_2H\]
 is well defined then H is a normal subgroup of G

17. Let H be a subgroup of a group G. Show that if H is a normal subgroup of G then the operation on G/H given by
 \[(g_1H)(g_2H) = g_1g_2H\]
 is well defined.

18. Let H be a normal subgroup of a group G. Show that G/H with operation given by
 \[(g_1H)(g_2H) = g_1g_2H\]
 is a group.

19. Show that every subgroup of an abelian group is normal.

20. Let $f : G \rightarrow H$ be a group homomorphism. Show that $\ker f$ is a subgroup of G.

21. Let $f : G \rightarrow H$ be a group homomorphism. Show that $\ker f$ is a normal subgroup of G.

22. Let $f : G \rightarrow H$ be a group homomorphism. Show that $\text{im } f$ is a subgroup of H.

23. Let $f : G \rightarrow H$ be a group homomorphism. Show that $\text{im } f$ is a normal subgroup of H.
