Homework 8: Due November 1, 2007

To grade: 4, 6, 11.

1. Let \(\mathbb{D} \) be a division ring. Show that the ideals of \(\mathbb{D} \) are \{0\} and \(\mathbb{D} \).

2. Let \(\mathbb{F} \) be a field. Show that the ideals of \(M_n(\mathbb{F}) \) are \{0\} and \(M_n(\mathbb{F}) \).

3. Show that each ideal of \(\mathbb{Z} \) is generated by one element.

4. Show that each ideal of \(\mathbb{R}[x] \) is generated by one element.

5. Give an example of a ring \(R \) and an ideal \(I \) such that \(I \) is not generated by one element (in any possible way). Be sure to prove that \(I \) is not generated by one element.

6. Show that \((\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z}) \cong \mathbb{Z}/10\mathbb{Z} \) as groups.

7. Show that the product of groups \((\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \) is not isomorphic to the group \(\mathbb{Z}/4\mathbb{Z} \).

8. Show that \(\mathbb{R}[x]/\langle x^2 + 1 \rangle \cong \mathbb{C} \).

9. Let \(H \) be a subgroup of a group \(G \). The canonical injection is the map \(\iota : H \rightarrow G \) given by

\[
\iota : H \rightarrow G \\
h \mapsto h
\]

Show that \(\iota : H \rightarrow G \) is a well defined injective group homomorphism.

10. Let \(N \) be a normal subgroup of a group \(G \). The canonical surjection or canonical projection is the map \(\pi : G \rightarrow G/N \) given by
\[\pi : \ G \longrightarrow \ G / N \]
\[g \mapsto gN \]
Show that \(\pi : G \rightarrow G / N \) is a well defined surjective group homomorphism and that \(\text{im} \ \pi = G / N \) and \(\ker \pi = N \).

11. Using the notations of problem 10, let \(M \) be a subgroup of \(G \). Show that
 1. \(M / N = \{mN \mid m \in M\} \) is a subgroup of \(G / N \).
 2. \(M / N \) is a normal subgroup of \(G / N \) if \(M \) is a normal subgroup of \(G \).
 3. \(M / N = \pi(M) \) and if \(M \) contains \(N \) Then \(\pi^{-1}(\pi(M)) = M \).
 4. Conclude that there is a one-to-one correspondence between subgroups of \(G \) containing \(N \) and subgroups of \(G / N \).
 5. Show that this correspondence takes normal subgroups to normal subgroups.

12. Let \(I \) be an ideal of a ring \(R \). The canonical injection is the map \(\iota : I \rightarrow R \) given by
 \[\iota : \ I \longrightarrow \ R \]
 \[i \mapsto i \]
Show that \(\iota : I \rightarrow R \) is a well defined injective ring homomorphism.

13. Let \(I \) be an ideal of a ring \(R \). The canonical surjection or canonical projection is the map \(\pi : R \rightarrow R / I \) given by
 \[\pi : \ R \longrightarrow \ R / I \]
 \[r \mapsto r + I \]
Show that \(\pi : R \rightarrow R / I \) is a well defined surjective homomorphism and that \(\text{im} \ \pi = R / I \) and \(\ker \pi = I \).

14. Using the notations of problem 13, let \(J \) be an ideal of \(R \). Show that
 1. \(J / I = \{j + I \mid j \in I\} \) is an ideal of \(R / I \).
 2. \(J / I = \pi(J) \) and if \(J \) contains \(I \) then \(\pi^{-1}(\pi(J)) = J \).
 3. Conclude that there is a one-to-one correspondence between ideals of \(R \) containing \(I \) and ideals of \(R / I \).