1 Reflections

Let \(V \) be a complex vector space of dimension \(n \), and let \(s : V \rightarrow V \) be a linear transformation fixing pointwise a subspace of codimension 1, i.e.

\[
\dim V^s = n - 1, \quad \text{where } V^s = \{ v \in V | s(v) = v \}.
\]

Proposition 1.1 The matrix of \(s \) is similar to

\[
\begin{bmatrix}
1 & 1 & & & \\
& 1 & 1 & & \\
& & \ddots & \ddots & \\
& & & 1 & 1 \\
& & & * & 1
\end{bmatrix}
\]

or

\[
\begin{bmatrix}
1 & & & & * \\
& 1 & & & 1 \\
& & \ddots & \ddots & \\
& & & 1 & 1 \\
& & & & 1
\end{bmatrix}
\]

with \(* \in \mathbb{C} \).

Proof

Let \(\mathcal{B} = \{ v_1, \ldots, v_{n-1} \} \) be a basis of \(V^s \). The matrix of \(s|_{V^s} \) in \(\mathcal{B} \) is the identity matrix, i.e. \([s]_{\mathcal{B}^s} = I_{n-1} \). Extend \(\mathcal{B} \) to a basis \(\mathcal{B}' \) of \(V \) by adding an extra vector \(v_n \in V \setminus V^s \) to \(\mathcal{B} \).

Suppose \(s(v_n) = b_1 v_1 + \cdots + b_n v_n \neq v_n \). Then

\[
[s]_{\mathcal{B}'} = \begin{bmatrix}
1 & b_1 \\
1 & b_2 \\
& \ddots & \vdots \\
& & 1 & b_{n-1} \\
& & & 1 & b_n
\end{bmatrix}
\]
Consider \(v = c_1 v_1 + \cdots + c_{n-1} v_{n-1} + v_n \). Then
\[
 s(v) = c_1 v_1 + \cdots + c_{n-1} v_{n-1} + b_1 v_1 + \cdots + b_n v_n
 = (c_1 + b_1) v_1 + \cdots + (c_{n-1} + b_{n-1}) v_{n-1} + b_n v_n
\]

If \(b_n \neq 1 \), we take \(c_i = b_i / (b_n - 1) \) so that \(s(v) = b_n v \).

Define a new basis \(B'' = \{v_1, \ldots, v_{n-1}, v\} \). With respect to this basis the matrix of \(s \),
\[
 [s]_{B''} = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
 & 1 & & b_n \\
 & & \ddots & \vdots \\
 & & & 1 & b_{n-1} \\
& & & & 1 \\
\end{bmatrix},
\]
has the desired form.

If \(b_n = 1 \), then the matrix
\[
 [s]_{B'} = \begin{bmatrix}
1 & b_1 \\
1 & b_2 \\
& \ddots & \vdots \\
& & 1 & b_{n-1} \\
& & & 1 \\
\end{bmatrix}
\]
is not diagonalizable since its only eigenvalue is 1 and the corresponding eigenspace has
dimension \(n - 1 \) (less than the size of the matrix). By Jordan normal form, this means that
the number of Jordan blocks corresponding to the eigenvalue 1 is \(n - 1 \) and the matrix is
similar to
\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
& \ddots & \ddots & \ddots \\
& & 1 & 1 \\
& & & 1 \\
\end{bmatrix}
\]

\(\square \)

Remark 1.2 If in the above proof \(b_n = 0 \) then
\[
 [s]_{B''} = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
& 1 & \cdots & 1 \\
& & \ddots & \ddots \\
& & & 1 & 0 \\
\end{bmatrix}
\]
and s is a projection. If we impose s to be invertible, i.e. $s \in GL(V)$, then b_n can’t be 0. For if so, $s(v_n) \neq v_n$ but $s(s(v_n)) = s(v_n)$, and s will not be injective (projections are not injective).

Furthermore, if we impose s to be of finite order $k > 1$, then

$$b_1(1 + b_n + \cdots + b_n^k)v_1 + \cdots + b_{n-1}(1 + b_n + \cdots + b_n^{k-1})v_{n-1} + b_n^{k+1}v_n = s^k(v_n)$$

$$= v_n = b_1v_1 + \cdots + b_nv_n,$$

implies b_n is a k^{th} root of unity.

Definition 1.3 Let V be a complex vector space. A (complex) reflection in V is a linear transformation $s \in GL(V)$ of finite order.

Corollary 1.4 The matrix of a reflection is similar to

$$\begin{bmatrix}
1 & 1 \\
& \ddots \\
& & 1 \\
& & \ast
\end{bmatrix}$$

where $1 \neq \ast \in \mathbb{C}$ is a root of unity.

Let V be a complex vector space. A **complex reflection group** is a subgroup $W \subseteq GL(V)$ generated by reflections.

Let V^* be the dual space of V. The group W acts on V^* by

$$wX(v) = X(w^{-1}v), \quad \text{for } w \in W, X \in V^* \text{ and } v \in V,$$

the **contragredient** action.

If A is the matrix of the action of a reflection $s \in W$ on V with respect to a fixed basis of V, then the matrix of the action of the reflection on V^* with respect to the dual basis is A^{-t}, the inverse transpose of A.

Recall $(A^{-1})^t = (A^t)^{-1}$ and therefore there is no ambiguity in writing the symbol A^{-t} when referring to the inverse transpose matrix.
Lemma 1.5 Let V be a vector space with bases $B = \{v_1, \ldots, v_n\}$, $B' = \{v'_1, \ldots, v'_n\}$, and change of basis matrix $P : B \rightarrow B'$. Let V^* be the dual space of V with bases $C = \{X_1, \ldots, X_n\}$ dual to B, $C' = \{X'_1, \ldots, X'_n\}$ dual to B' and change of basis matrix $Q : C \rightarrow C'$.

Diagrammatically

\[
\begin{array}{c c}
B = \{v_1, \ldots, v_n\} & \text{is the dual basis of} & C = \{X_1, \ldots, X_n\} \\
\downarrow P & & \downarrow Q \\
B' = \{v'_1, \ldots, v'_n\} & \text{is the dual basis of} & C' = \{X'_1, \ldots, X'_n\}
\end{array}
\]

Then $Q = P^{-t}$.

Proof

Write $v_i \in B$ in basis B', $v_i = p_{1i}v'_1 + p_{2i}v'_2 + \cdots + p_{ni}v'_n$. Then

\[
P = \begin{bmatrix}
p_{11} & p_{12} & \cdots & p_{1n} \\
p_{21} & p_{22} & \cdots & p_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n1} & p_{n2} & \cdots & p_{nn}
\end{bmatrix}
\]

is the change of basis matrix from B to B', i.e. $P[v]_B = [v]_{B'}$.

Note that $X'_j(v_i) = X'_j(p_{1i}v'_1 + \cdots + p_{ni}v'_n) = p_{ji}$, for $X'_j \in C'$. Then for $v \in V$ written in basis B, $v = b_1v_1 + \cdots + b_nv_n$ we have

\[
X'_j(v) = X'_j(b_1v_1 + \cdots + b_nv_n) = b_1p_{j1} + \cdots + b_np_{jn} = p_{j1}X_1(v) + \cdots + p_{jn}X_n(v).
\]

So $X'_j = p_{j1}X_1 + \cdots + p_{jn}X_n$. And therefore

\[
Q^{-1} = \begin{bmatrix}
p_{11} & p_{21} & \cdots & p_{n1} \\
p_{12} & p_{22} & \cdots & p_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1n} & p_{2n} & \cdots & p_{nn}
\end{bmatrix} = P^t.
\]

Thus, $Q = P^{-t}$.

\[\square\]

Let $s \in W \subseteq GL(V)$ be a reflection. A root of s is an eigenvector $\alpha \in V$ associated to the nontrivial eigenvalue of s.

4
Proposition 1.6 Let $s \in W \subseteq GL(V)$ be a reflection in V. Then s is also a reflection in V^*, and if α^\vee is a root of s in V^* then $V^s = \ker(\alpha^\vee)$.

Proof

Let A be the matrix of s in some fixed basis of V. By corollary 1.4, A is similar to a matrix of the form

$$D = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & 1 & \cdots & \cdot \\ & & & 1 \\ & & & & c \end{bmatrix}$$

with $c \in \mathbb{C}$, i.e. there exist an invertible matrix P such that $PAP^{-1} = D$.

Then $P^{-t}A^tP^t = (PAP^{-1})^t = D^t = D$, so

$$P^{-t}A^{-t}P^t = (P^{-t}A^tP^t)^{-1} = D^{-1} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & 1 & \cdots & \cdot \\ & & & 1 \\ & & & & c^{-1} \end{bmatrix}$$

Thus, A^{-t} is a reflection in V^*.

Let $\alpha^\vee \in V^*$ be a root of s in V^*, i.e. an eigenvector of A^{-t} associated to the nontrivial eigenvalue c^{-1}. A vector $v = (b_1, \ldots, b_n) \in V$ is in V^s iff $v = Av$, i.e.

$$\begin{bmatrix} b_1 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & 1 & \cdots & \cdot \\ & & & 1 \\ & & & & c \end{bmatrix} \begin{bmatrix} b_1 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_{n-1} \\ cb_n \end{bmatrix},$$

which happens iff $cb_n = b_n$ iff $0 = b_n = \alpha(v)$ iff $v \in \ker(\alpha)$.

Here $\alpha^\vee = (0, 0, \cdots, 1)$ in the basis where D^{-1} is diagonal, which is dual to the basis where D is diagonal by lemma 1.5.

\square

Let V be a complex vector space. Let $[,]$ denote the dot product in V and \langle , \rangle denote the pairing $V \times V^* \rightarrow \mathbb{C}$.

5
Proposition 1.7 A linear transformation \(s \in GL(V) \) is a complex reflection of order \(r \) and root \(\alpha \) iff

\[
s(v) = v - \langle v, \alpha^\vee \rangle \alpha \quad \text{where} \quad \alpha^\vee = \frac{(1 - \mu)[\alpha,\alpha]}{[\alpha,\alpha]} \in V^*\]

and \(\mu \in \mathbb{C} \) is a primitive \(r^{th} \)-root of unity.

Proof

Assume \(s \in GL(V) \) is a complex reflection of order \(r \) and root \(\alpha \). Let \(v = (v_1,\ldots,v_n) \in V \) in the basis where the matrix of \(s \) is diagonal and take \(\alpha = (0,\ldots,0,1) \). Then

\[
s(v_1,\ldots,v_n) = (v_1,\ldots,\mu v_n) = (v_1,\ldots,v_n) - (1 - \mu)v_n(0,\ldots,0,1) = v - \langle v, \alpha^\vee \rangle \alpha.
\]

Now assume \(s \in GL(V) \) such that

\[
s(v) = v - \langle v, \alpha^\vee \rangle \alpha \quad \text{where} \quad \alpha^\vee = \frac{(1 - \mu)[\alpha,\alpha]}{[\alpha,\alpha]} \in V^*
\]

and \(\mu \in \mathbb{C} \) is a primitive \(r^{th} \)-root of unity. Then

\[
v \in V^s \iff v = s(v) = v - \langle v, \alpha^\vee \rangle \alpha \iff \langle v, \alpha^\vee \rangle = 0 \iff [v,\alpha] = 0 \iff v \in \alpha^\perp
\]

where \(\alpha^\perp = \{v \in V | [v,\alpha] = 0\} \) is the orthogonal complement of the line spanned by \(\alpha \). This is a codimension one subspace. Thus, \(s \) is a reflection.

This reflection has root \(\alpha \) since \(\alpha - \langle \alpha, \alpha^\vee \rangle \alpha = \mu \alpha \). Moreover,

\[
s^k(v) = v - (1 + \mu + \mu^2 + \cdots + \mu^{k-1})\langle v, \alpha^\vee \rangle \alpha
\]

implies that the order of \(s \) is \(r \).

\[\square\]

Proposition 1.7 gives us an equivalent definition of a reflection. Using this definition, we get an alternative proof of Proposition 1.6 as follows

Proof of Proposition 1.6 (alternative)

Let \(s \in W \) be a reflection in \(V \), let \(v \in V \) and \(X \in V^* \). Then \(s(v) = v - \langle v, \alpha^\vee \rangle \alpha \) and

\[
s^{-1}X(v) = X(sv) = X(v - \langle v, \alpha^\vee \rangle \alpha) = X(v) - \langle v, \alpha^\vee \rangle X(\alpha),
\]
or, with the pairing notation

\[s^{-1}X(v) = (sv, X) = \langle v - \langle v, \alpha^\vee \rangle \alpha, X \rangle = \langle v, X \rangle - \langle v, \alpha^\vee \rangle \langle \alpha, X \rangle. \]

So \(s^{-1}X = X - \langle X, \alpha \rangle \alpha^\vee \). This is, \(s^{-1}X \), and therefore \(s \), are reflections in \(V^* \).

Let us show that \(V^s \subseteq \ker(\alpha^\vee) \). Let \(v \in V^s \), i.e. \(s(v) = v \), and let \(X \in V^* \). Then

\[X(sv) = s^{-1}X(v) = X(v) - \langle v, \alpha^\vee \rangle X(\alpha). \]

But \(sv = v \) since \(v \in V^s \). Then

\[X(v) = X(v) - \langle v, \alpha^\vee \rangle X(\alpha), \]

which implies that \(\langle v, \alpha^\vee \rangle X(\alpha) = 0 \). And since \(X \) is arbitrary, it follows that \(\langle v, \alpha^\vee \rangle = 0 \), i.e. \(v \in \ker(\alpha^\vee) \).

For the other containment, let \(v \in \ker(\alpha^\vee) \), i.e. \(\langle v, \alpha^\vee \rangle = 0 \), and let \(X \in V^* \). Then

\[X(sv) = X(v) - \langle v, \alpha^\vee \rangle X(\alpha) = X(v). \]

But since \(X \) is arbitrary, this means that \(sv = v \), i.e. \(v \in V^s \).

\[\square \]

2 Divided Difference Operators

For this section we fix the following data:

\(G \) a complex semisimple Lie group, which is assumed to be connected and simply connected.
\(B \) a fixed Borel subgroup of \(G \).
\(H \) a fixed maximal torus of \(G \).
\(\mathfrak{h} \) the Lie algebra of \(H \).
\(\mathfrak{h}^* \) the space dual to \(\mathfrak{h} \).
\(\Delta \subseteq \mathfrak{h}^* \) the root system of \(\mathfrak{h} \).
\(\Delta_+ \subseteq \Delta \) the set of positive roots.
\(\Sigma \subseteq \Delta_+ \) the system of simple roots.

Let \(W = N_G(H)/H \), where \(N_G(H) \) is the normalizer of \(H \) in \(G \). \(W \) is the Weyl group of \(G \) and it is isomorphic to a real reflection group, generated by the set \(S = \{ s_\alpha | \alpha \in \Sigma \} \) of simple reflections, i.e. \(s_\alpha : \mathfrak{h}^* \rightarrow \mathfrak{h}^* \) is a reflection in the hyperplane orthogonal to
\[\alpha \in \Sigma \subseteq \mathfrak{h}^*. \]

The **length** function \(\ell : W \rightarrow \mathbb{N} \) of \(W \) relative to the \(S \), is defined by \(\ell(w) = \) the least number of factors in the decomposition of \(w \) in simple reflections, \(w = s_{\alpha_1} \cdots s_{\alpha_l}, \alpha_i \in \Sigma. \)

Such a decomposition is called reduced if \(l = \ell(w). \ w_0 \in W \) is the unique element of maximal length \(r = \ell(w_0). \)

Let \(S(\mathfrak{h}^*) \) be the symmetric algebra of \(\mathfrak{h}^* \). \(S(\mathfrak{h}^*) \) is isomorphic to the algebra of polynomial functions on \(\mathfrak{h}. \)

For each root \(\alpha \in \Delta \) the **divided difference operator** \(\Delta_{\alpha} : S(\mathfrak{h}^*) \rightarrow S(\mathfrak{h}^*) \) is defined by

\[
\Delta_{\alpha}(f) = \frac{f - s_\alpha(f)}{\alpha} \quad \text{for} \quad f \in S(\mathfrak{h}^*).
\]

The following proposition allow us to well define a divided difference operator \(\Delta_w \) for any \(w \in W. \)

Proposition 2.1 Let \(w = s_{\alpha_1} \cdots s_{\alpha_l}, \alpha_i \in \Sigma. \)
1. If \(\ell(w) < l \), then \(\Delta_{\alpha_1} \cdots \Delta_{\alpha_l} = 0. \)
2. If \(\ell(w) = l \), then \(\Delta_{\alpha_1} \cdots \Delta_{\alpha_l} \) depends only on \(w \) and not on its expression \(w = s_{\alpha_1} \cdots s_{\alpha_l}. \)

We define then \(\Delta_w = \Delta_{\alpha_1} \cdots \Delta_{\alpha_l} \) where \(s_{\alpha_1} \cdots s_{\alpha_l} \) is a reduced expression of \(w. \)

The divided difference operators induce well defined operators \(\Delta_w \) in the **coinvariant algebra** \(S_W = S(\mathfrak{h}^*)/I_W \) of \(W. \)

The following theorem specifies a basis \(\{P_w|w \in W\} \) of \(H^*(G/B) \) dual to the basis \(\{Z_w|w \in W\} \) of \(H_*(G/B) \) consisting of Schubert classes.

Theorem 2.2 Berstein, Gel’fand, Gel’fand (1973)

1. Let \(w_0 \in W \) be the element of maximal length \(r = \ell(w_0). \) Then

\[
P_{w_0} = \rho^r/r! = |W|^{-1} \prod_{\alpha \in \Delta_+} \alpha \quad \text{where} \quad \rho = \frac{1}{2} \sum_{\alpha \in \Delta_+} \alpha.
\]

2. If \(w \in W, \) then \(P_w = \Delta_{w_0^{-1}w_0}P_{w_0}. \)
In other words, the previous theorem gives an isomorphism

\[H^*(G/B) \xrightarrow{\sim} S_W \]

\[Z_w \rightarrow P_w \]