Affine braid groups of classical type

Arun Ram
Department of Mathematics
University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

July 26, 2005

1 The type GL_n affine braid group

There are three equivalent ways of depicting affine braids
(a) As braids in a (slightly thickened) cylinder,
(b) As braids in a (slightly thickened) annulus,
(c) As braids with a flagpole.
By drawing pictures of the corresponding affine braids it is easy to check that the braid group \(\tilde{B} \) can be made into a flagpole braid by putting a flagpole down the middle of the cylinder and since an annulus can be made into a cylinder by turning up the edges and a cylindrical braid another, or placing one flagpole braid on top of another. These are equivalent formulations. The multiplication is by placing one cylinder on top of another, placing one annulus inside another, or placing one flagpole braid on top of another. These are equivalent formulations.

The affine braid group is the group \(\tilde{B}_k \) formed by the affine braids with \(k \) strands. The affine braid group \(\tilde{B}_k \) can be presented by generators \(T_1, T_2, \ldots, T_{k-1} \) and \(X^\varepsilon \)

\[
T_i = \begin{array}{c}
\text{---------------------------------} \\
\end{array}
\quad \text{and} \quad X^\varepsilon = \begin{array}{c}
\text{---------------------------------} \\
\end{array}
\quad (1.1)
\]

with relations

(a) \(T_i T_j = T_j T_i \), if \(|i - j| > 1 \),

(b) \(T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \), for \(1 \leq i \leq k - 2 \),

(c) \(X^\varepsilon_1 T_1 X^\varepsilon_1 T_1 = T_1 X^\varepsilon_1 T_1 X^\varepsilon_1 \),

(d) \(X^\varepsilon_i T_i = T_i X^\varepsilon_i \), for \(2 \leq i \leq k - 1 \).

For \(1 \leq i \leq k \) define

\[
X^\varepsilon_i = T_{i-1} T_{i-2} \cdots T_2 T_1 X^\varepsilon_1 T_1 T_2 \cdots T_{i-1} = PICTURE.
\]

By drawing pictures of the corresponding affine braids it is easy to check that the \(X^\varepsilon_i \) all commute with each other and so \(X = \langle X^\varepsilon_i \mid 1 \leq i \leq k \rangle \) is an abelian subgroup of \(\tilde{B}_k \). Let \(L \cong \mathbb{Z}^k \) be the free abelian group generated by \(\varepsilon_1, \ldots, \varepsilon_k \). Then

\[
L = \{ \lambda_1 \varepsilon_1 + \cdots + \lambda_k \varepsilon_k \mid \lambda_i \in \mathbb{Z} \} \quad \text{and} \quad X = \{ X^\lambda \mid \lambda \in L \},
\]

where \(X^\lambda = (X^\varepsilon_1)^{\lambda_1} (X^\varepsilon_2)^{\lambda_2} \cdots (X^\varepsilon_k)^{\lambda_k} \), for \(\lambda \in L \).

For \(1 \leq i \leq k \) define

\[
X^\varepsilon_i = T_{i-1} T_{i-2} \cdots T_2 T_1 X^\varepsilon_1 T_1 T_2 \cdots T_{i-1} = PICTURE,
\]

By drawing pictures of the corresponding affine braids it is easy to check that the \(X^\varepsilon_i \) all commute with each other and so \(X = \langle X^\varepsilon_i \mid 1 \leq i \leq k \rangle \) is an abelian subgroup of \(\tilde{B}_k \). The free abelian group generated by \(\varepsilon_1, \ldots, \varepsilon_k \) is \(\mathbb{Z}^k \) and

\[
X = \{ X^\lambda \mid \lambda \in \mathbb{Z}^k \} \quad \text{where} \quad X^\lambda = (X^\varepsilon_1)^{\lambda_1} (X^\varepsilon_2)^{\lambda_2} \cdots (X^\varepsilon_k)^{\lambda_k},
\]

for \(\lambda = \lambda_1 \varepsilon_1 + \cdots + \lambda_k \varepsilon_k \) in \(\mathbb{Z}^k \).

Let \(U \) be a quasitriangular Hopf algebra Let \(M \) and \(V \) be \(U \)-modules such that the operators \(R_{MV}, R_{VM} \) and \(R_{VV} \) are well defined. Define \(\tilde{R}_i, 1 \leq i \leq k - 1 \), and \(\tilde{R}_0^2 \) in \(\text{End}_U(M \otimes V)^{\otimes k} \) by

\[
\tilde{R}_i = id_M \otimes (id_V)^{\otimes (i-1)} \otimes R_{VV} \otimes (id_V)^{\otimes (k-i-1)} \quad \text{and} \quad \tilde{R}_0^2 = (\tilde{R}_{MV} \tilde{R}_{VM}) \otimes (id_V)^{\otimes (k-1)}.
\]

Then the braid relations

\[
\tilde{R}_i \tilde{R}_{i+1} \tilde{R}_i = \begin{array}{c}
\text{---------------------------------} \\
\end{array} = \begin{array}{c}
\text{---------------------------------} \\
\end{array} = \tilde{R}_{i+1} \tilde{R}_i \tilde{R}_{i+1}
\]

2
and

\[\tilde{R}_0^2 \tilde{R}_1 \tilde{R}_0^2 \tilde{R}_1 = \tilde{R}_0 \tilde{R}_1 \tilde{R}_0 \tilde{R}_1 \tilde{R}_0. \]

imply that there is a well defined map

\[
\Phi: \tilde{B}_k \rightarrow \text{End}_U(M \otimes V^{\otimes k})
\[
T_i \mapsto \tilde{R}_i, \\
X^{\varepsilon_i} \mapsto \tilde{R}_0^2, \\
1 \leq i \leq k - 1,
\]

which makes \(M \otimes V^{\otimes k} \) into a right \(\tilde{B}_k \) module. Note that

\[
\Phi(X^{\varepsilon_i}) = \tilde{R}_{M \otimes V^{\otimes(i-1)},V} \tilde{R}_{V,M \otimes V^{i}}
\]

and thus, by (???), the eigenvalues of \(\Phi(X^{\varepsilon_i}) \) are related to the eigenvalues of the Casimir.

1.1 The \(\tilde{B}_k \) module \(M \otimes V^{\otimes k} \)

Let \(U \) be a quasitriangular Hopf algebra. Let \(M \) and \(V \) be a \(U \)-modules such that \(\tilde{R}_{MV} \) and \(\tilde{R}_{VV} \) are well defined operators. Define \(\tilde{R}_i, 1 \leq i \leq k - 1, \) and \(\tilde{R}_0^2 \) in \(\text{End}_{U \otimes \mathcal{A}}(M \otimes V^{\otimes k}) \) by

\[
\tilde{R}_i = \text{id}_M \otimes \text{id}_V^{(i-1)} \otimes \tilde{R}_{VV} \otimes \text{id}_V^{(k-i-1)} \quad \text{and} \quad \tilde{R}_0^2 = (\tilde{R}_{MV} \tilde{R}_{VM}) \otimes \text{id}_V^{(k-1)}.
\]

Proposition 1.1. The map defined by

\[
\Phi: \tilde{B}_k \rightarrow \text{End}_{U \otimes \mathcal{A}}(M \otimes V^{\otimes k})
\[
T_i \mapsto \tilde{R}_i, \\
X^{\varepsilon_i} \mapsto \tilde{R}_0^2, \\
1 \leq i \leq k - 1,
\]

makes \(M \otimes V^{\otimes k} \) into a right \(\tilde{B}_k \) module.

Proof. It is necessary to show that

(a) \(\tilde{R}_i \tilde{R}_j = \tilde{R}_j \tilde{R}_i, \) if \(|i - j| > 1, \)

(b) \(\tilde{R}_0^2 \tilde{R}_i = \tilde{R}_i \tilde{R}_0^2, \) \(i > 2, \)

(c) \(\tilde{R}_i \tilde{R}_{i+1} \tilde{R}_i = \tilde{R}_{i+1} \tilde{R}_i \tilde{R}_{i+1}, 1 \leq i \leq k - 2, \)

(d) \(\tilde{R}_0^2 \tilde{R}_1 \tilde{R}_0^2 \tilde{R}_1 = \tilde{R}_1 \tilde{R}_0^2 \tilde{R}_1 \tilde{R}_0^2. \)

The relations (a) and (b) follow immediately from the definitions of \(\tilde{R}_i \) and \(\tilde{R}_0^2 \) and (c) is a particular case of the braid relation (???). The relation (d) is also a consequence of the braid relation:

\[
\tilde{R}_0^2 \tilde{R}_1 \tilde{R}_0^2 \tilde{R}_1 = (\tilde{R}_{MV} \tilde{R}_{VM} \otimes \text{id})(\text{id} \otimes \tilde{R}_{VV})(\tilde{R}_{MV} \tilde{R}_{VM} \otimes \text{id})(\text{id} \otimes \tilde{R}_{VV})
\]

\[= (\tilde{R}_{MV} \otimes \text{id})(\text{id} \otimes \tilde{R}_{MV})(\tilde{R}_{VV} \otimes \text{id})(\text{id} \otimes \tilde{R}_{VV})(\tilde{R}_{VM} \otimes \text{id})(\text{id} \otimes \tilde{R}_{VV})
\]

\[= (\text{id} \otimes \tilde{R}_{VV})(\tilde{R}_{MV} \otimes \text{id})(\text{id} \otimes \tilde{R}_{MV})(\tilde{R}_{VV} \otimes \text{id})(\text{id} \otimes \tilde{R}_{MV})(\tilde{R}_{VM} \otimes \text{id})
\]

\[= (\text{id} \otimes \tilde{R}_{VV})(\tilde{R}_{MV} \tilde{R}_{VM} \otimes \text{id})(\text{id} \otimes \tilde{R}_{VV})(\tilde{R}_{MV} \tilde{R}_{VM} \otimes \text{id})
\]

\[= \tilde{R}_1 \tilde{R}_0^2 \tilde{R}_1 \tilde{R}_0^2,
\]
or equivalently,

\[
\tilde{R}_0^2 \tilde{R}_1 R_0^2 \tilde{R}_1 = \begin{array}{c}
\vdots \\
\
\end{array} = \begin{array}{c}
\vdots \\
\end{array} = \begin{array}{c}
\vdots \\
\end{array} = \tilde{R}_1 R_0^2 \tilde{R}_1 R_0^2.
\]

\[\square\]

1.2 Schur functors

Fix a U module V and a weight λ in \mathfrak{h}^* and let $M(\lambda)$ be the Verma module of highest weight λ. The Schur functor from U-modules to \tilde{B}_k-modules is the functor $F_{\lambda,V}$ given by

\[F_{\lambda,V}(M) = \text{Hom}_U(M(\lambda), M \otimes V^{\otimes k}). \quad (1.6)\]

The functors $F_{\lambda,V}$ are interesting whenever they are well defined. Of particular importance are the \tilde{B}_k modules

\[\mathcal{M}^{\lambda/\mu} = F_{\lambda,V}(M(\mu)) \quad \text{and} \quad \mathcal{L}^{\lambda/\mu} = F_{\lambda,V}(L(\mu)). \quad (1.7)\]

Since the image of $M(\lambda)$ under a U-module homomorphism is determined by the image of a generating highest weight vector, the \tilde{B}_k module $F_{\lambda,V}(M)$ can be identified with the vector space of highest weight vectors of weight λ in $M \otimes V^{\otimes k}$. The functor $F_{\lambda,V}$ is the composition of two functors: the functor $\cdot \otimes V^{\otimes k}$ and the functor $\text{Hom}_U(M(\lambda), \cdot)$. The first is exact when V is finite dimensional and the second is exact when λ is integrally dominant, because these are cases when V is flat and $M(\lambda)$ is projective, see [Jz, p. 72]. More generally one should analyze all the functors

\[F_{\lambda,V}(M) = \text{Ext}_U^i(M(\lambda), M \otimes V^{\otimes k}).\]

1.3 Restriction from \tilde{B}_k to B_k

Proposition 1.2. The braid group B_k is the quotient of the affine braid group by the relation $X_1 \epsilon_1 = 1$ and so the modules $\mathcal{L}^{\nu/0}$ are B_k-modules. Let P^+ be the set of dominant integral weights. Define the tensor product multiplicities $c^\lambda_{\mu\nu}$, $\lambda, \mu, \nu \in P^+$, by the $U_h \mathfrak{g}$-module decompositions

\[L(\mu) \otimes L(\nu) \cong \bigoplus_{\lambda \in P^+} L(\lambda)^{\otimes c^\lambda_{\mu\nu}}.\]

Then

\[\text{Res}^B_{\tilde{B}_k}(\mathcal{L}^{\lambda/\mu}) = \bigoplus_{\nu \in P^+} (\mathcal{L}^{\nu/0})^{\otimes c^\lambda_{\mu\nu}}.\]

Proof. Let us abuse notation slightly and write sums instead of direct sums. Then, as a $(U_h \mathfrak{g}, B_k)$ bimodule

\[L(\mu) \otimes V^{\otimes k} = \sum_\lambda L(\lambda) \otimes \mathcal{L}^{\lambda/\mu},\]

where $\mathcal{L}^{\lambda/\mu} = F_\lambda(L(\mu))$. As a $(U_h \mathfrak{g}, B_k)$ bimodule

\[L(\mu) \otimes V^{\otimes k} = L(\mu) \otimes \left(\sum_\nu L(\nu) \otimes \mathcal{L}^{\nu/0} \right) = \sum_{\lambda, \nu} c^\lambda_{\mu\nu} L(\lambda) \otimes \mathcal{L}^{\nu/0}.\]

Comparing coefficients of $L(\lambda)$ in these two identities yields the formula in the statement. \[\square\]
1.4 Quantum traces

For \(z \in \text{End}(M) \) such that \(z \) commutes with \(e^{h\rho} \) define the \textit{quantum trace} of \(z \) by

\[
\text{qtr}(z) = \text{tr}(e^{h\rho}z).
\]

The \textit{quantum dimension} of \(M \) is

\[
\text{qdim}(M) = \text{qtr}(\text{id}_M).
\]

If \(M \) is a semisimple \(U \)-module and \(z \in \text{End}_U(M) \) then

\[
\text{tr}_q(z) = \sum_{\lambda \in \hat{M}} \dim_q(L(\lambda))\chi^\lambda_M(z), \quad \text{since} \quad M \cong \bigoplus_{\lambda \in \hat{M}} L(\lambda) \otimes Z^\lambda,
\]

as a \((U, Z)\)-bimodule, where \(Z = \text{End}_U(M) \), \(L(\lambda) \) are simple \(U \)-modules and \(Z^\lambda \) are the simple \(Z \) modules. There are natural injections

\[
\text{End}_U^0(M) \hookrightarrow \text{End}_U^0(M \otimes V) \quad \text{z} \mapsto \text{id}_V \otimes \text{z}
\]

\textbf{Proposition 1.3.} Then

\[
\text{qtr}_{M \otimes V}(z) = \text{qdim}(V)\text{qtr}_M(z) \quad \text{and} \quad \text{qtr}_{M \otimes V}(z\tilde{R}_{MV}) = \alpha \text{qtr}_M(z),
\]

where \(\alpha = ????. \)

By Proposition (3.7) (a) it is enough to show that \(\tilde{e}_2\tilde{R}\tilde{e}_2 = (\dim_q(V))^{-1}v(\lambda)^{-1}\tilde{e}_2 \) as elements of \(\text{End}_U(V \otimes V \otimes V^*) \). Let \(\{e_i\} \) be a basis of \(V \) and let \(\{e^i\} \) be a dual basis in \(V^* \). It follows from the identities (2.5), (2.6) and (2.7) that if \(\mathcal{R} = \sum_i a_i \otimes b_i \) and \((S \otimes \text{id})(\mathcal{R}) = \mathcal{R}^{-1} = \sum_j c_j \otimes d_j \), then

\[
\sum_i b_i S^2(a_i) = \sum_j d_j S(c_j) = \sum_j S^{-1}(d_j)c_j = u^{-1}.
\]
Let \(x, y \in V \) and let \(\phi \in V^* \). Then,
\[
\hat{e}_2 R \hat{e}_2 (x \otimes y \otimes \phi) = (\dim_q(V))^{-1} (\phi, v^{-1} uy) \hat{e}_2 R \sum_k x \otimes e_k \otimes e^k
\]
\[
= (\dim_q(V))^{-1} (\phi, v^{-1} uy) \hat{e}_2 \sum_{k,i} b_i e_k \otimes a_i x \otimes e^k
\]
\[
= (\dim_q(V))^{-2} (\phi, v^{-1} uy) \sum_{k,i,l} (e_k, v^{-1} ua_i x) b_i e_k \otimes e_l \otimes e^l
\]
\[
= (\dim_q(V))^{-2} (\phi, v^{-1} uy) \sum_{i,l} (b_i v^{-1} ua_i x) \otimes e_l \otimes e^l
\]
\[
= (\dim_q(V))^{-2} (\phi, v^{-1} uy) \sum_{i,l} b_i S^2(a_i) v^{-1} ux \otimes e_l \otimes e^l
\]
\[
= (\dim_q(V))^{-2} (\phi, v^{-1} uy) \sum_{l} u^{-1} v^{-1} ux \otimes e_l \otimes e^l
\]
\[
= \hat{e}_2 (v^{-1} x \otimes y \otimes \phi)
\]
\[
= (\dim_q(V))^{-1} v(\lambda)^{-1} \hat{e}_2 (x \otimes y \otimes \phi).
\]

1.5 Markov traces

A Markov trace on the affine braid group is a trace functional which respects the inclusions \(\mathcal{B}_k \subseteq \mathcal{B}_{k+1} \subseteq \cdots \) where

\[
\mathcal{B}_k \quad \xrightarrow{\mathcal{B}_{k+1}}
\]

\[
1 \cdots k
\]

\[
1 \cdots k + 1
\]

More precisely, a Markov trace on the affine braid group with parameters \(z, Q_1, Q_2, \ldots \in \mathbb{C} \) is a sequence of functions

\[
\text{mt}_k : \mathcal{B}_k \longrightarrow \mathbb{C}
\]

such that

(1) \(\text{mt}_1(1) = 1 \),

(2) \(\text{mt}_{k+1}(b) = \text{mt}_k(b) \), for \(b \in \mathcal{B}_k \),

(3) \(\text{mt}_k(b_1 b_2) = \text{mt}_k(b_2 b_1) \), for \(b_1, b_2 \in \mathcal{B}_k \),

(4) \(\text{mt}_{k+1}(b T_k) = z \text{mt}_k(b) \), for \(b \in \mathcal{B}_k \),

(5) \(\text{mt}_{k+1}(b (\tilde{X}^{_{k+1}}) \gamma) = Q_r \text{mt}_k(b) \), for \(b \in \mathcal{B}_k \),

where

\[
\tilde{X}^{_{k+1}} = T_k T_{k-1} \cdots T_2 X^{_{\epsilon_1}} T_2^{-1} \cdots T_{k-1}^{-1} T_{k}^{-1}
\]

If \(M \) is a finite dimensional \(U = U_h \mathfrak{g} \) module and \(a \in \text{End}_V(M) \) the quantum trace of \(a \) on \(M \) is the trace of the action of \(e^{_h a} \) on \(M \),

\[
\text{tr}_q(a) = \text{Tr}(e^{_h a}, M), \quad \text{and} \quad \text{dim}_q(M) = \text{tr}_q(\text{id}_M) = \text{Tr}(e^{_h}, M)
\]
The argument of [LR] Theorem 3.10b shows that if \(V \) is simple then \(\tilde{\varepsilon} \) is the unique \(U \)-invariant projection onto the invariants in \(V \otimes V^* \). Pictorially,

\[
\begin{array}{c}
\varepsilon_k \left(\begin{array}{c}
\cdots \\
1 \\
\cdots \\
z
\end{array} \right) = \begin{array}{c}
\cdots \\
1 \\
\cdots \\
z
\end{array} = \begin{array}{c}
\cdots \\
1 \cdots k-1
\end{array} \\
\varepsilon_k(z)
\end{array}
\]

The argument of [LR] Theorem 3.10b shows that

\[\text{mt}_k(b) = \text{mt}_{k-1}(\varepsilon_{k-1}(b)), \quad \text{if } b \in \mathcal{B}_k.\]

(1.11)

Since \(\varepsilon_1((X^\varepsilon)^r) \) is a \(U_q\mathfrak{g} \)-module homomorphism from \(M \) to \(M \) and, since \(M \) is simple, Schur’s lemma implies that

\[r \text{ loops } = \varepsilon_1((X^\varepsilon)^r) = Q_r \cdot \text{id}_M, \quad \text{for some } Q_r \in \mathbb{C}.\]
Let $\tilde{R}_i = \text{id}_{V^{(i-1)}} \otimes \tilde{R}_{V,M} \otimes \text{id}_{V^{(k+1)-i}}$ so that $(\tilde{X}^{\varepsilon_{k+1}})^r = (\tilde{R}_{k} \cdots \tilde{R}_1)^{-1}(X^{\varepsilon_1})^r(\tilde{R}_{k} \cdots \tilde{R}_1)$. Then

$$
\begin{align*}
mt_{k+1} \begin{pmatrix}
1 & \cdots & k \\
b \\
(\tilde{X}^{\varepsilon_{k+1}})^r
\end{pmatrix} &= mt_{k+1} \begin{pmatrix}
1 & \cdots & k \\
b \\
(\tilde{X}^{\varepsilon_1})^r
\end{pmatrix} = mt_k \begin{pmatrix}
1 & \cdots & k \\
b \\
(\tilde{X}^{\varepsilon_1})^r
\end{pmatrix} = Q_r \cdot mt_k \begin{pmatrix}
1 & \cdots & k \\
b \\
(\tilde{X}^{\varepsilon_1})^r
\end{pmatrix}.
\end{align*}
$$

2 Affine Hecke algebras of types B and C

$$
\begin{align*}
\alpha_1 &= \varepsilon_1, & \hat{\alpha}_1 &= 2\varepsilon_1, & \omega_1 &= \varepsilon_1 + \cdots + \varepsilon_n, \\
\alpha_i &= \varepsilon_i - \varepsilon_{i-1}, & \hat{\alpha}_i &= \varepsilon_i - \varepsilon_{i-1}, & \omega_i &= \varepsilon_i + \cdots + \varepsilon_n,
\end{align*}
$$

$$
P^\vee = \sum_{i=1}^{n} \mathbb{Z}\varepsilon_i, \quad \text{and} \quad Q^\vee = \{\lambda_1 \varepsilon_1 + \cdots + \lambda_n \varepsilon_n \mid \lambda_1 + \cdots + \lambda_n = 0 \mod 2\}.
$$

Then

$$
\varphi = \varphi^\vee = \varepsilon_n + \varepsilon_{n-1} \quad \text{and} \quad s_\varphi = t_{n-1}t_n s_{n-1,n},
$$

so that

$$
s_\varphi = s_{n-1} s_{n-2} \cdots s_2 s_1 s_2 \cdots s_{n-1} s_{n-1} \cdots s_2 s_1 s_2 \cdots s_{n-1}.
$$

So

$$
X^{\varepsilon_{n-1}+\varepsilon_n} = T_0 T_{n-1} \cdots T_2 T_1 T_2 \cdots T_{n-1} T_n T_{n-1} \cdots T_2 T_1 T_2 \cdots T_n.
$$

Next

$$
\omega_n = \varepsilon_n, \quad w_n = t_1 \cdots t_{n-1}, \quad \text{and} \quad w_0 = t_1 \cdots t_n,
$$

so that

$$
w_0 w_n = t_n = s_n s_{n-1} \cdots s_2 s_1 s_2 \cdots s_n
$$

and

$$
X^{\varepsilon_n} = \sigma T_n T_{n-1} \cdots T_2 T_1 T_2 \cdots T_n.
$$

Then

$$
X^{\varepsilon_i} = T_{i+1}^{-1} X^{\varepsilon_{i+1}} T_{i+1}^{-1} \quad \text{and} \quad \text{so}
$$

$$
X^{\varepsilon_i} = T_{i+1}^{-1} T_{i+1}^{-1} \cdots T_{n-1}^{-1} \sigma T_n T_{n-1} \cdots T_2 T_1 T_2 \cdots T_i
$$

$$
= \sigma T_i^{-1} T_{i+1}^{-1} \cdots T_{n-1}^{-1} T_0 T_{n-1} \cdots T_2 T_1 T_2 \cdots T_i.
$$
When $n = 2$: In this case the Dynkin diagram is $\begin{array}{c} \overset{0}{1} \overset{2}{3} \overset{n-1}{n} \overset{n}{0} \end{array}$ and if

$$g_2 = \begin{array}{c} \overset{1}{0} \overset{2}{1} \overset{2}{0} \end{array}, \quad g_1 = \begin{array}{c} \overset{1}{0} \overset{2}{1} \overset{2}{0} \end{array}, \quad g_0 = \begin{array}{c} \overset{1}{0} \overset{2}{1} \overset{2}{0} \end{array}$$

then

$$X^{\varepsilon_2} = \sigma T_2 T_1 T_2 = T_0 T_1 T_0 \sigma = PICTURE,$$

$$X^{\varepsilon_1} = T_0 T_2^{-1} T_1 \sigma = \sigma T_2 T_0^{-1} T_1 = PICTURE,$$

$$X^{\varepsilon_1 + \varepsilon_2} = T_0 T_1 T_2 T_1 = PICTURE.$$
A pictorial representation \tilde{B} is

$g_1 = \hfill$

$g_0 = \hfill$ and

$g_i = \hfill$

It may be helpful to add to \tilde{B} the full twist

$\sigma = \hfill$ so that $\sigma g_1 \sigma^{-1} = g_0$, and $\sigma g_i \sigma^{-1} = g_{n-i+2}$,

produces the automorphism of the Dynkin diagram.

This pictorial representation indicates that there are R-matrix representations of \tilde{B} as follows. Let U be a quasitriangular Hopf algebra. Let M_1, M_2 and V be U-modules. Then the map

\[
\begin{align*}
\mathbb{C} \tilde{B} & \longrightarrow \text{End}_u(M_1 \otimes V^{\otimes k} \otimes M_2) \\
g_1 & \longmapsto \tilde{R}_{M_1,V} \tilde{R}_{V,M_1} \otimes \text{id}_V^{\otimes (k-1)} \otimes \text{id}_{M_2} \\
g_i & \longmapsto \text{id}_{M_1} \otimes \text{id}_V^{\otimes (i-1)} \otimes \tilde{R}_{V,V} \otimes \text{id}_V^{\otimes (k-i-1)} \otimes \text{id}_{M_2} \\
g_0 & \longmapsto \text{id}_{M_1} \otimes \text{id}_V^{\otimes (k-1)} \otimes \tilde{R}_{V,M_2} \tilde{R}_{M_2,V}.
\end{align*}
\]

Then

$X^{\xi_1} = \hfill$

There is an isomorphism moving the right hand pole to the left, after which

$X^{\xi_i} = \hfill$

In this new notation

$g_1 = \hfill$ \hspace{1cm} $g_0 = \hfill$
The Dynkin diagram of affine type C is

$$\begin{array}{c}
\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & n & n-1 & \cdots & 0
\end{array}
\end{array}$$

Then

$$\begin{align*}
\alpha_1 &= 2\varepsilon_1, & \alpha_1^\vee &= \varepsilon_1, & \omega_1^\vee &= \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_n), \\
\alpha_i &= \varepsilon_i - \varepsilon_{i-1}, & \alpha_i^\vee &= \varepsilon_i - \varepsilon_{i-1}, & \omega_i^\vee &= \varepsilon_i + \cdots + \varepsilon_n,
\end{align*}$$

$$P^\vee = \{\lambda_1\varepsilon_1 + \cdots + \lambda_n\varepsilon_n \mid \text{all } \lambda_i \in \frac{1}{2}\mathbb{Z}_{\geq 0} \text{ or all } \lambda_i \in \mathbb{Z}_{\geq 0}\}, \quad Q^\vee = \sum_{i=1}^{n} \mathbb{Z}\varepsilon_i.$$

Then

$$\varphi = 2\varepsilon_n, \quad \varphi^\vee = \varepsilon_n, \quad \text{and} \quad s_\varphi = t_n = s_n s_{n-1} \cdots s_2 s_1 s_2 \cdots s_n.$$

So

$$X^\varepsilon_n = T_0 T_n T_{n-1} \cdots T_2 T_1 T_2 \cdots T_n.$$

Then, since $X^\varepsilon_i = T_{i+1}^{-1} X^\varepsilon_{i+1} T_{i+1}^{-1}$,

$$X^\varepsilon_i = T_{i+1}^{-1} T_{i+2}^{-1} \cdots T_n^{-1} T_0 T_n T_{n-1} \cdots T_2 T_1 T_2 \cdots T_i.$$

Next

$$\omega_1^\vee = \frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_n) \quad \text{and} \quad w_1 = s_1 s_2 s_{n-1} s_3 s_{n-3} \cdots, \quad w_0 = t_1 t_2 \cdots t_n.$$

So

$$w_0 w_1 = (s_1 s_2 \cdots s_n)(s_1 s_2 \cdots s_{n-1})(s_1 s_2 \cdots s_{n-2}) \cdots (s_1 s_2)s_1.$$

So

$$X^{\frac{1}{2}(\varepsilon_1 + \cdots + \varepsilon_n)} = \sigma(T_1 T_2 \cdots T_n)(T_1 T_2 \cdots T_{n-1})(T_1 T_2 \cdots T_{n-2}) \cdots (T_1 T_2) T_1,$$

where

$$\sigma = \begin{array}{c}
\begin{array}{cccc}
1 & 2 & 3 & \cdots \\
2 & 1 & 2 & \cdots \\
3 & 2 & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}
\end{array}$$

an element of order 2.

When $n = 2$: the Dynkin diagram is

$$\begin{array}{c}
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{array}$$

the alcoves are
and

\[X^{e_2} = T_0 T_2 T_1 T_2 = PICTURE, \]
\[X^{e_1} = T_2^{-1} T_0 T_2 T_1 = PICTURE, \]
\[X^{\frac{1}{2}(e_1 + e_2)} = \sigma T_1 T_2 T_1 = PICTURE. \]

3 Affine type \(C \) Temperley-Lieb

Let \(\tilde{H} \) be the quotient of \(\mathbb{C}\tilde{B} \) by the relations

\[g_i^2 = (q - q^{-1})g_i + 1, \quad \text{for } 1 \leq i \leq n - 1, \]
\[g_0^2 = (s - s^{-1})g_0 + 1, \quad \text{and} \]
\[g_n^2 = (t - t^{-1})g_n + 1. \]

Then let

\[e_i = q - g_i, \quad \text{for } 1 \leq i \leq n - 1, \]
\[e_0 = s - g_0, \quad \text{and} \]
\[e_n = t - g_n. \]

Proposition 3.1.

(a) The relation

\[g_i^2 = (q - q^{-1})g_i + 1 \]

is equivalent to

\[e_i^2 = (q^{-1})e_i. \]

(b) Assuming the relations \(g_i^2 = (q - q^{-1})g_i + 1 \), the relation

\[g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1} \]

is equivalent to

\[e_i e_{i+1} e_i - e_{i+1} e_i e_{i+1} = e_i - e_{i+1}. \]

(c) Assuming the relations \(g_i^2 = (q_i - q_i^{-1})g_i + 1 \), the relation

\[g_0 g_1 g_0 g_1 = g_1 g_0 g_1 g_0 \]

is equivalent to

\[e_0 e_1 e_0 e_1 - e_1 e_0 e_1 e_0 = (s q^{-1} + q s^{-1})(e_0 e_1 - e_1 e_0). \]

Define an algebra \(T_n \) generated by \(e_0, e_1, \ldots, e_n \) with relations

\[e_i^2 = (s + s^{-1})e_i, \quad e_i^2 = (q + q^{-1})e_i, \quad e_0^2 = (t + t^{-1})e_0, \]
\[e_2 e_1 e_2 = (s q^{-1} + q s^{-1}) e_2, \quad e_i e_{i-1} e_i = e_i, \quad e_i e_{i+1} e_i = e_i, \]
\[e_n e_0 e_n = (t q^{-1} + q t^{-1}) e_n. \]

where \(2 \leq i \leq n \). This algebra is a surjective image of \(\tilde{H} \) with kernel generated by

???

Putting

\[I = \prod_{i \text{ even}} e_i \quad \text{and} \quad J = \prod_{i \text{ odd}} e_i \]

and imposing the relations

\[IJI = bI \quad \text{and} \quad JIJ = bJ \]

makes this into a finite dimensional algebra (see the work of Rittenberg, Nichols, de Gier and Pyatov).