1 Column strict tableaux

A letter is an element of $B(\varepsilon_1) = \{\varepsilon_1, \ldots, \varepsilon_n\}$ and a word of length k is an element of $B(\varepsilon_1)^{\otimes k} = \{\varepsilon_{i_1} \otimes \cdots \otimes \varepsilon_{i_k} \mid 1 \leq i_1, \ldots, i_k \leq n\}$.

For $1 \leq i \leq n-1$ define

\[\tilde{f}_i : B(\varepsilon_1)^{\otimes k} \rightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\} \quad \text{and} \quad \tilde{e}_i : B(\varepsilon_1)^{\otimes k} \rightarrow B(\varepsilon_1)^{\otimes k} \cup \{0\} \]

as follows. For $b \in B(\varepsilon_1)^{\otimes k}$,

- place $+1$ under each ε_i in b,
- place -1 under each ε_{i+1} in b, and
- place 0 under each ε_j, $j \neq i, i+1$.

Ignoring 0s, successively pair adjacent $(-1, +1)$ pairs to obtain a sequence of unpaired $+1$s and -1s

\[+1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 \]

(after pairing and ignoring 0s). Then

\[\tilde{f}_i b = \text{same as } b \text{ except the letter corresponding to the rightmost unpaired } +1 \text{ is changed to } \varepsilon_{i+1}, \]
\[\tilde{e}_i b = \text{same as } b \text{ except the letter corresponding to the leftmost unpaired } -1 \text{ is changed to } \varepsilon_i. \]

If there is no unpaired $+1$ after pairing then $\tilde{f}_i b = 0$.
If there is no unpaired -1 after pairing then $\tilde{e}_i b = 0$.

A partition is a collection μ of boxes in a corner where the convention is that gravity goes up and to the left. As for matrices, the rows and columns of μ are indexed from top to bottom and left to right, respectively.

The parts of μ are $\mu_i = \text{(the number of boxes in row } i \text{ of } \mu)$,
the length of μ is $\ell(\mu) = \text{(the number of rows of } \mu)$,
the size of μ is $|\mu| = \mu_1 + \cdots + \mu_{\ell(\mu)} = \text{(the number of boxes of } \mu).$
Then μ is determined by (and identified with) the sequence $\mu = (\mu_1, \ldots, \mu_\ell)$ of positive integers such that $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_\ell > 0$, where $\ell = \ell(\mu)$. For example,

$$(5, 5, 3, 3, 1, 1) = \begin{array} \text{?} \end{array}.$$

A partition of k is a partition λ with k boxes. Write $\lambda \vdash k$ if λ is a partition of k. Make the convention that $\lambda_i = 0$ if $i > \ell(\lambda)$. The dominance order is the partial order on the set of partitions of k,

$$P^+(k) = \{\text{partitions of } k \} = \{\lambda = (\lambda_1, \ldots, \lambda_\ell) \mid \lambda_1 \geq \cdots \geq \lambda_\ell > 0, \lambda_1 + \cdots + \lambda_\ell = k\},$$

given by

$$\lambda \geq \mu \quad \text{if} \quad \lambda_1 + \lambda_2 + \cdots + \lambda_i \geq \mu_1 + \mu_2 + \cdots + \mu_i \quad \text{for all } 1 \leq i \leq \max\{\ell(\lambda), \ell(\mu)\}.$$

For example, for $k = 6$ the Hasse diagram of the dominance order is

```
(16) —— (214) —— (2212)
    /   \         /   \         /   \\
   (313) —— (321) —— (42) —— (51) —— (6)
      \   /     \   /     \   /     \\
       (32) —— (42) —— (51) —— (6)
```

Let λ be a partition and let $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}^n$ be a sequence of nonnegative integers. A column strict tableau of shape λ and weight μ is a filling of the boxes of λ with μ_1 1s, μ_2 2s, \ldots, μ_n ns, such that

(a) the rows are weakly increasing from left to right,
(b) the columns are strictly increasing from top to bottom.

If p is a column strict tableau write $\text{shp}(p)$ and $\text{wt}(p)$ for the shape and the weight of p so that

$$\text{shp}(p) = (\lambda_1, \ldots, \lambda_n), \quad \text{where } \lambda_i = \text{number of boxes in row } i \text{ of } p, \quad \text{and}$$
$$\text{wt}(p) = (\mu_1, \ldots, \mu_n), \quad \text{where } \mu_i = \text{number of } i \text{ s in } p.$$

For example,

$$p = \begin{array} {cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
2 & 2 & 2 & 2 & 3 & 3 & 4 & \\
3 & 3 & 3 & 4 & 4 & 4 & 5 & \\
4 & 5 & 5 & 6 & & & & \\
6 & 7 & & & & & & \\
7 & & & & & & & \\
\end{array}$$

has $\text{shp}(p) = (9, 7, 7, 4, 2, 1, 0)$ and $\text{wt}(p) = (7, 6, 5, 5, 3, 2, 2)$.

2
For a partition λ and a sequence $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{Z}_{\geq 0}$ of nonnegative integers write

$$B(\lambda) = \{\text{column strict tableaux } p \mid \text{shp}(p) = \lambda\},$$
$$B(\lambda)_\mu = \{\text{column strict tableaux } p \mid \text{shp}(p) = \lambda \text{ and wt}(p) = \mu\},$$

(1.2)

Let λ be a partition with k boxes and let

$$B(\lambda) = \{\text{column strict tableaux of shape } \lambda\}.$$

The set $B(\lambda)$ is a subset of $B(\varepsilon_1)^{\otimes k}$ via the injection

$$B(\lambda) \hookrightarrow B(\varepsilon_1)^{\otimes k} \quad \text{p} \mapsto (\text{the arabic reading of } p)$$

where the arabic reading of p is $\varepsilon_{i_1} \varepsilon_{i_2} \cdots \varepsilon_{i_k}$ if the entries of p are i_1, i_2, \ldots, i_k read right to left by rows with the rows read in sequence beginning with the first row.

Proposition 1.1. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ be a partition with k boxes. Then $B(\lambda)$ is the subset of $B(\varepsilon_1)^{\otimes k}$ generated by

$$p_\lambda = \varepsilon_{\lambda_1} \otimes \varepsilon_{\lambda_1} \cdots \otimes \varepsilon_{\lambda_1} \otimes \varepsilon_{\lambda_2} \otimes \varepsilon_{\lambda_2} \cdots \otimes \varepsilon_{\lambda_2} \otimes \cdots \otimes \varepsilon_{\lambda_n} \otimes \varepsilon_{\lambda_n} \otimes \cdots \otimes \varepsilon_{\lambda_n}$$

under the action of the operators $\tilde{e}_i, \tilde{f}_i, 1 \leq i \leq n$.

Proof. If $P = P(b)$ is a filling of the shape λ then $b_{i_1} \otimes \cdots \otimes b_{i_k} = b$ is obtained from P by reading the entries of P in arabic reading order (right to left across rows and from top to bottom down the page). The tableau

$$P_\lambda = P(p_\lambda) =$$

is the column strict tableau of shape λ with 1s in the first row, 2s in the second row, and so on. Define operators \tilde{e}_i and \tilde{f}_i on a filling of λ by

$$\tilde{e}_i P = P(\tilde{e}_i p) \quad \text{and} \quad \tilde{f}_i P = P(\tilde{f}_i b), \quad \text{if } P = P(b).$$

To prove the proposition we shall show that if P is a column strict tableau of shape λ then

(a) $\tilde{e}_i P$ and $\tilde{f}_i P$ are column strict tableaux,
(b) P can be obtained by applying a sequence of \tilde{f}_i to $P\lambda$. Let $P^{(j)}$ be the column strict tableau formed by the entries of P which are $\leq j$ and let $\lambda^{(j)} = \text{shp}(P^{(j)})$. Identify P with the sequence

$$P = (\emptyset = \lambda^{(0)} \subseteq \lambda^{(1)} \subseteq \cdots \subseteq \lambda^{(n)} = \lambda),$$

where $\lambda^{(i)}/\lambda^{(i-1)}$ is a horizontal strip for each $1 \leq i \leq n$.

(a) Let us analyze the action of \tilde{e}_i and \tilde{f}_i on P. The sequence of $+1, -1, 0$ constructed in (???)

is given by

placing $+1$ in each box of $\lambda^{(i)}/\lambda^{(i-1)}$,
placing -1 in each box of $\lambda^{(i+1)}/\lambda^{(i)}$,
placing 0 in each box of $\lambda^{(j)}/\lambda^{(j-1)}$, for $j \neq i, i+1$, and reading the resulting filling in Arabic reading order, see (???). The process of removing $+1, -1$ pairs can be executed on the horizontal strips $\lambda^{(i+1)}/\lambda^{(i)}$ and $\lambda^{(i)}/\lambda^{(i-1)}$,

$$\lambda^{(i+1)} = \lambda^{(i-1)}$$

with the effect that the entries in any configuration of boxes of the form

+1 +1 · · · +1
-1 -1 · · · -1

will be removed. Other $+1, -1$ pairs will also be removed and the final sequence

$$-1 -1 \cdots -1 +1 +1 \cdots +1$$

(1.3)

will correspond to a configuration of the form

$$\lambda^{(i+1)} = \lambda^{(i-1)}$$

The rightmost -1 in the sequence (*) corresponds to a box in $\lambda^{(i+1)}/\lambda^{(i)}$ which is leftmost in its row and which does not cover a box of $\lambda^{(i)}/\lambda^{(i-1)}$. Similarly the leftmost $+1$ in the sequence (*) corresponds to a box in $\lambda^{(i)}/\lambda^{(i-1)}$ which is rightmost in its row and which does not have a box of $\lambda^{(i+1)}/\lambda^{(i)}$ covering it. These conditions guarantee that \tilde{e}_iP and \tilde{f}_iP are column strict tableaux.

(b) Applying the operator

$$\tilde{f}_{n,i} = \tilde{f}_{n-1} \cdots \tilde{f}_{i+1} \tilde{f}_i$$

to $P\lambda$
will change the rightmost i in row i to n. A sequence of applications of

$$\tilde{f}_{n,i}, \text{ as } i \text{ decreases (weakly) from } n - 1 \text{ to } 1,$$

can be used to produce a column strict tableau P_n in which

1. the entries equal to n match the entries equal to n in P, and
2. the subtableau of P_n containing the entries $\leq n - 1$ is $P_{\lambda(n-1)}$.

Iterating the process and applying a sequence of operators

$$\tilde{f}_{n-1,i}, \text{ as } i \text{ decreases (weakly) from } n - 2 \text{ to } 1,$$

to the tableau P_n can be used to produce a tableau P_{n-1} in which

1. the entries equal to n and $n - 1$ match the entries equal to n and $n - 1$ in P, and
2. the subtableau of P_{n-1} containing the entries $\leq n - 2$ is $P_{\lambda(n-2)}$.

The tableau P is obtained after a total of n iterations of this process. □