G = a complex connected reductive algebraic group
B = a Borel subgroup
T = a maximal torus

Equivalent data:
W = finite reflection group
C = a fixed fundamental chamber
P = a W-invariant lattice.

Example 1:
\(G = GL_n(C) \)
\(B = \{ (I, d) \} \)
\(T = \{ (0, d) \} \)

\(W = S_n \) acting on \(\mathbb{R}^n = \bigoplus_{i=1}^{n} \mathbb{R} \epsilon_i \)

Reflections: \(s_{ij}, \) transposes \(\xi_i \) and \(\xi_j \)

\(C = \{ \lambda = (\lambda_1, 2\lambda_2, \ldots, n\lambda_n) \} \)

\(P = \mathbb{Z}^n = \bigoplus_{i=1}^{n} \mathbb{Z} \epsilon_i \)
Theorem (a) There is a bijection

\[\{ \text{finite dimensional} \} \leftrightarrow P \]

\[\text{simple } T \text{-modules} \]

\[x^\mu : T \to \mathbb{C} \leftrightarrow 1^\mu \]

(b) There is a bijection

\[P^+ \leftrightarrow \{ \text{finite dimensional} \} \]

\[\text{simple } G \text{-modules} \]

\[\lambda \mapsto L(\lambda) \]

where \(P^+ = P \cap \overline{C} \), \(\overline{C} \) is the closure of \(C \).

Let \(L(\lambda) \) be a simple \(G \)-module.

\[\text{Res}_T^G (L(\lambda)) = \bigoplus_{\mu \in P} L(\lambda)_\mu, \text{ where} \]

\[L(\lambda)_\mu = \{ m \in L(\lambda) \mid tm = x^\mu(t)m, \text{ for } t \in T \} \]

The character of \(L(\lambda) \) is

\[s_\lambda = \sum_\mu \dim (L(\lambda)_\mu) x^\mu \]

an element of \(\mathbb{C}[P] = \text{span}_\mathbb{C} \{ x^\mu \mid \mu \in P \} \) with \(x^\lambda x^\mu = x^{\lambda+\mu} \).

Goal: The crystal is an index set

\[\hat{\mathcal{L}}(\lambda) = \bigcup_{\mu} \hat{\mathcal{L}}(\lambda)_\mu \leftrightarrow \text{basis of } L(\lambda) = \bigoplus_{\mu} L(\lambda)_\mu \]

such that

\[s_\lambda = \sum_{\rho \in \hat{\mathcal{L}}(\lambda)} x^{\text{wt}(\rho)}, \text{ where } \text{wt}(\rho) = \mu \text{ if } \rho \in \hat{\mathcal{L}}(\lambda)_\mu. \]
The affine Hecke algebra

Let H_1, \ldots, H_n be the walls of C and the reflection in H_i.

The positive side of H_i is the side towards C.

The affine Hecke algebra H is given by generators $X^i, X \in P$ and $T_w, w \in W$ and relations

\[X^i X^j = X^j X^i = X^j X^i, \]

\[T_{s_i} T_w = \begin{cases} T_{s_i w}, & \text{if } s_i w > w, \\ q^{-2} T_{s_i w} + (1 - q^{-2}) T_w, & \text{if } s_i w < w. \end{cases} \]

If λ is on the positive side of H_i, then

\[X^i T_{s_i} = T_{s_i} X^i + (1 - q^{-2}) (X^{s_i \lambda} X^{i+} + \ldots + X^{\lambda-i-} + X^i) \]

Problem: Find $C_{\lambda w}^\mu$ such that

\[X^i T_w = \sum_{\nu, \mu} C_{\lambda w}^\mu T_{\nu} X^\mu. \]

Idea: The crystal is the solution to this problem at $q = 0$.
The Path model

$\text{wt}(p)$ = endpoint of p
$\tau(p)$ = initial direction of p
$\sigma(p)$ = final direction of p

Root operators

and define τ_i by

$$\tau_i F.p = p \quad \text{if } \tau_i p \neq 0.$$

A crystal is a set of paths closed under $\tau_i, \tilde{\tau}_i$.

Let

$$\hat{\mathcal{C}}(\lambda) = \text{crystal generated by } p_{\lambda}$$

Theorem

$$s_{\lambda} = \sum_{p \in \hat{\mathcal{C}}(\lambda)} x^{\text{wt}(p)}$$
Theorem (Pittie-Ram) let \(\varphi = 0 \) in \(\mathcal{X} \). Let \(x \in P^* \) and \(w \in W \). Then

\[
x^1 T_{w^{-1}} = \sum_{p \in Z(u)} T_{\varphi(p)+1} x^{w_t(p)}
\]

Example \(\xi(p) \) where \(\rho = \omega_1 + \omega_2 = \xi_1 + \xi_2 = \Xi_1 \Xi_2 \)

The crystal generated by \(p \).

The crystal generated by \(\xi(p) \).
Branching/Littlewood-Richardson rules

A highest weight path is a path \(p \leq c \cdot p \).

Theorem. Let \(B \) be a crystal. Then

\[
\text{char } B = \sum_{p \in B} s_{\mu}(p)_{p \leq c \cdot p}
\]

Example. Highest weight paths in \(\hat{\mathfrak{h}}(p) \otimes \hat{\mathfrak{h}}(p) \)

\[
\sum_{(1)} = s_0 + 2s_p + s_{-p} + s_{\pm p} + s
\]
Example: Highest weight paths in $\mathfrak{g} \text{ on}$

$\mathfrak{g} \text{ on}$

$\mathfrak{g} \text{ on}$

These paths give us a tower.