$P = \mathbb{Z}$-lattice

$W = a$ finite group acting on P

$C = a$ fixed fundamental chamber in $\mathbb{R}^n = \mathbb{R} \otimes \mathbb{Z} P$.

The quantum group associated to (W, C, P) is the $\mathfrak{q}(q)$ algebra

$U = U_0 \cup U_{>0}$

U_0 is generated by F_1, F_2, \ldots, F_n

$U_{>0}$ is generated by E_1, E_2, \ldots, E_n

$U_0 = \mathbb{C}[K_1^{\pm 1}, \ldots, K_n^{\pm 1}]$

with relations

The Verma module is the U-module

$M(\lambda) = U_0 V_\lambda^+$ with $E_i V_\lambda^+ = 0$, $K_i V_\lambda^+ = q^{\mu(\lambda)} V_\lambda^+$.

Algebra seminar, Verma crystals, University of Lyon
Fundamental data
May 26, 2005
$U(\mathfrak{a})$ is the unique simple quotient of $H(\mathfrak{a})$.

Let $[k, 1] = \frac{q^{k} - q^{-k}}{q - q^{-1}}$ and $[m, 1] = [m, [m, 1]] \cdots [2, 1]$

Fix a reduced word $w_0 = s_{i_1} \cdots s_{i_N}$.

The negative root vectors are

\[F_{i_1} = F_i, \quad F_{i_2} = F_{i_1} F_{i_2}, \quad \cdots, \quad F_{i_N} = T_{i_1} \cdots T_{i_{N-1}} F_{i_N} \]

where $T_i : W \to W$ are Lusztig's braid group automorphisms.

Recall:

\[\beta_1 = e_i, \quad \beta_2 = s_i e_i, \quad \cdots, \quad \beta_N = s_i \cdots s_{i_{N-1}} e_i \]

are the positive roots.

The PBW bases of $U_{\mathfrak{a}}$ is

\[\{ F^{(\vec{m})} = F_{\beta_1}^{(m_1)} \cdots F_{\beta_N}^{(m_N)} \mid \vec{m} = (m_1, \ldots, m_N) \in \mathbb{Z}_{\geq 0}^N \} \]

Where $F_{\beta}^{(m)} = F_{\beta}^{m} = \frac{[m, 1]}{[m, 1]}$

The star involution is the Q-automorphism of U given by

\[\bar{e}_i = e_i, \quad \bar{F}_i = F_i, \quad \bar{K}_i = K_i^{-1}, \quad \bar{e} = e^{-1} \]
The canonical basis is

\[B = \{ \delta^{(\hat{m})} \mid \hat{m} \in \mathbb{Z}^n_{\geq 0} \} \]

given by

1. \(\delta^{(\hat{m})} = \delta^{(\hat{m})} \)

2. \(\delta^{(\hat{m})} = \lambda^{(\hat{m})} + \sum_{\hat{m} \in \hat{m}^*} \rho_{\hat{m}, \hat{m}} F^{(\hat{m})} \text{ with } \rho_{\hat{m}, \hat{m}} \in \mathbb{Q}_{\geq 0} \).

\[\lambda^{(\hat{m})} \mid \hat{m} \in \mathbb{Z}^n_{\geq 0} \] depends on the choice \(w_0 = s_{i_1} \cdots s_{i_n} \).

Theorem (Losztn)

(a) \(B \) does not depend on the choice \(w_0 = s_{i_1} \cdots s_{i_n} \)

(b) \(B(\lambda) = \{ \delta^{(\hat{m})} \mid \lambda^{(\hat{m})} \neq 0 \text{ in } \mathcal{L}(\lambda) \} \text{ is a basis of } \mathcal{L}(\lambda) \).

The Weyl polytope is the convex hull of \(\{ \delta^{(w)} \mid w \in W \} \).

\[\mathcal{W}(\lambda) = \]
let $b \in B$. The HV polytope of d is

$$\left[d \right] = \text{convex hull of } \{ dw \mid w \in W \}$$

where

$$d s_i, s_j = -m_i, -m_j, \ldots, -m_i' \mid s_i'. $$

Then

$$B \leftrightarrow \{ HV \text{polytopes} \}$$

$$d \mapsto \left[d \right] = \begin{array}{c}
\text{Diagram}
\end{array}$$

and

$$B \Lambda \leftrightarrow \{ HV \text{polytopes} \ \left[\bar{d} \right] \mid \left[\bar{d} \right] + \lambda \subseteq \left[\Lambda \right] \}.$$

Kamnitzer has described the crystal structure (root operators) on HV polytopes to produce a Verma crystal.

Path crystals

\begin{align*}
&H_4, \\
&\text{Diagram 1} \\
&H_4, \\
&w t(p)
\end{align*}
Root operators

\[f_{ij} p = p \text{ if } f_{ij} \neq 0. \]

A crystal is a set of paths which is closed under the root operators.

\[B(p) \text{ is the crystal generated by } p. \]

\[B(p) \rightarrow B(1000p) \]

\[p \rightarrow p \otimes p. \]
Let \(C(A) = B(\infty A) \)

View \(\rho A \in C(A) \) as

\[\rho A : \mathbb{R}_{>0} \to \mathbb{R}^n = \mathbb{R}^n \text{ with } \rho(1) = 1. \]

If \(\rho \in C(A) \) and

\[t = (a, w_1, w_2) = a \underbrace{w_1 \ldots w_2}_{\text{a term of } \rho} \]

then let

\(u \) be the unique element (up to constant) in \(U_{\leq 0} \) s.t.

\[H/w_1(a\rho - \rho) \to H/w_1(a\rho - \rho) \]

\[v^+_w(a\rho - \rho) = u \] \(v^+_w(a\rho - \rho) \]

Let

\[u = \frac{TT^* u}{\text{trace}} \]

Theorem (Hittelman):

\[\{ u \rho \mid \rho \in C(A) \} \] is a basis of \(U_{\leq 0} \)
Theorem. Let \(\Lambda \in P^+ \) and \(\nu \in W \). Define

\[
C(\nu \omega_\Lambda) = \{ p \in C(\Lambda) \mid \text{the \textit{tit} of } p \text{ is } \nu \omega_\Lambda \} \\
B(\nu \omega_\Lambda) = \{ p \in C(\nu \omega_\Lambda) \mid \text{the \textit{tail} of } p \text{ is } \Lambda \text{ straight} \} \\
C(\nu \omega_\Lambda)^+ = \{ p \in C(\nu \omega_\Lambda) \mid p \text{ is } \nu \text{-highest \textit{weight}} \}
\]

Then

1. \(C(\nu \omega_\Lambda) \) is a model for \(M(\nu \omega_\Lambda) \) \\
 \(B(\nu \omega_\Lambda) \) is a model for \(L(\nu \omega_\Lambda) \)

2. (BGG resolution) There is an exact sequence of crystals
 \[
 0 \to C(\nu \omega_\Lambda) \to \cdots \to \oplus C(\nu \omega_\Lambda) \to \cdots \to C(\Lambda) \to B(\Lambda) \to 0
 \]

3. Let \(\mu \in P^+ \). The \(\gamma \)-weight multiplicity is

 \[
 K_\mu(\nu) = \sum_{p \in B(\Lambda) / \mu} \gamma(p)
 \]

 where \(B(\Lambda) / \mu = \{ p \in B(\Lambda) \mid wt(p) = \nu \omega_\Lambda \text{ and } \gamma(p) \text{ is the depth of } p \} \)

4. Let \(\nu \in W \). The Kazhdan-Lusztig polynomial is

 \[
 P_{\nu \omega_\Lambda}(t) = \sum_{p \in C(\nu \omega_\Lambda)^+} t^d(p)
 \]

 where \(d(p) \) is the depth of \(p \).