Let \(\mathbb{Z}^* \) be a lattice in \(\mathbb{R}^n \).

A set \(\Sigma \subseteq \mathbb{Z}^* \) is **convex** if it satisfies:

- if \(x, y \in \Sigma \) and \(x \in \mathbb{Z}^* \), then \(\lambda x + (1-\lambda)y \in \Sigma \)

Let \(\Sigma \subseteq \mathbb{Z}^* \). The **convex hull** of \(\Sigma \) is the subset \(\text{conv}(\Sigma) \) of \(\mathbb{R}^n \) such that:

- \(\text{conv}(\Sigma) \) is convex and \(\text{conv}(\Sigma) \supseteq \Sigma \),
- \(\text{conv}(\Sigma) \) is the smallest convex set containing \(\Sigma \).

An **integer polytope** \(P \) is the convex hull of a finite subset of \(\mathbb{Z}^* \).

The **normal fan** to \(P \) is

\[
\Delta_P = \{ \sigma^* \mid \sigma \text{ is a face of } P \}
\]

where

\[
\sigma^* = \{ \mathbf{v} \in \mathbb{R}^n \mid \langle \mathbf{v}, \mathbf{x} \rangle \geq \langle \mathbf{v}, \mathbf{x}' \rangle \text{ for } \mathbf{x} \in \sigma, \mathbf{x}' \in P \}
\]

Let

\[
\mathcal{O}[\Delta_P \cap \mathbb{Z}^*] = \mathbb{C}\text{-span}\{ \mathbf{X}^\lambda \mid \lambda \in \sigma^* \cap \mathbb{Z}^* \}
\]

with \(\mathbf{X}^\lambda \mathbf{X}^{\lambda'} = \mathbf{X}^{\lambda + \lambda'} \) and let

\[
\mathcal{U}_{\sigma^*} = \text{Spec} \left(\mathcal{O}[\Delta_P \cap \mathbb{Z}^*] \right)
\]

The **tropical variety** of \(\Delta \) is

\[
X(\Delta) = \bigcup_{\sigma^*} \mathcal{U}_{\sigma^*} \text{ with } \mathcal{U}_{\sigma^*} \text{ and } \mathcal{U}_{\sigma^*} \text{ glued along } \mathcal{U}_{\sigma^*} \]
let \(v_1, \ldots, v_d \) be the rays of \(\Delta \)
\(x_1, \ldots, x_d \), \(x_i \) with \(x_i \) the first lattice point along \(v_i \).

\[D_i = \overline{O_{x_i}} \]

and \(a_i \) be such that

\[P = \{ u \in \mathbb{R}^d \mid \langle u, x_i \rangle + a_i \geq 0 \text{ for } 1 \leq i \leq d \} \]

Then

\[D = a_1 D_1 + \cdots + a_d D_d \]

is a divisor on \(X(\Delta) \) that corresponds to a line bundle \(L \) on \(X(\Delta) \).

There is a bijection

\[\{ \text{integer polytopes} \} \leftrightarrow \{ \text{pairs } (X, L) \text{ where } \}
\]

\[X \text{ is a toric variety and } L \text{ is an ample line bundle on } X \]

Further let

\[x_t \in \text{basis of } H^0(X, L^{\otimes t}) \]

Then

\[\text{Card}(x_t) = \text{Card}(K P \cap \mathbb{Z}^d) \]
Examples of when global sections of line bundles is interesting

Flag varieties Internal Working seminar 02.06.2010 Melbourne Univ.

1. Complex reductive algebraic group
 \(G \)
2. Borel subgroup
 \(B \)
3. Maximal torus
 \(T \)

Theorem Let \(\lambda \) be a dominant weight of \(T \)

The irreducible finite dimensional \(\mathfrak{g} \)-modules are

\[H^0(G/B, L_\lambda) \]

for dominant integral weights \(\lambda \).

where \(L_\lambda = G \times_B C_\lambda \) is a line bundle on \(G/B \)

and \(C_\lambda \) is the one-dimensional \(B \)-module coming from the character \(\chi^\lambda: T \to \mathbb{C}^* \) indexed by \(\lambda \).

Let \((W_\lambda, \Sigma_\lambda)\) be the \(\mathfrak{g} \)-reflection group

corresponding to \((G,T)\) and let \(C \) be the chamber of \(\Sigma_\lambda \) corresponding to \(B \)

Let \(\Sigma^\lambda, \ldots, \Sigma^\mu \) be the walls of \(C \).

A path on \(\Sigma_\lambda^* \) is a piecewise linear map \([0,1] \to \Sigma_\lambda^* \)

such that \(p(0) = \Sigma \) and \(p(1) \in \Sigma_\lambda^* \).
The root operators $\tilde{\tau}_1, \ldots, \tilde{\tau}_n$ are given by

$\tilde{\tau}_1, \ldots, \tilde{\tau}_n$.

Let $B(\Gamma)$ be the crystal generated by τ_1

where $\tau_1(0) = 0$, $\tau_1(1) = 1$ and $\tau_1 \leq C$.

Then

$\text{char} \left(H^0(G/B, \mathcal{L}_\lambda) \right) = \sum_{\mu} \text{Corr}(B(\Gamma), \mathcal{L}_\mu) x^\mu$

$\mu \in \mathfrak{h}^*_C$.

Example, $G = SL_3(\mathbb{C})$
Let $LG^{v} = G^{v}(G^{v}(E))$.

$G^{v}(E) \cong \frac{\mathcal{G}^{v}(E)}{\mathcal{G}^{v}(E) \cdot E}$

LG^{v}/K^{v} is the loop Grassmannian

LG^{v}/K^{v} is the affine flag variety

Let $W = W_{0} \times \mathbb{Z}^{\mathbb{Z}}$ with $X^{v} = X^{v} \oplus \mathbb{Z}$.

Then

$LG^{v} = \bigcup \mathcal{K}^{v} \mathcal{K}^{v}$

$\mathcal{K}^{v} \cap U^{-1} \mathcal{K}^{v}$

$LG^{v} = \bigcup \text{Im}^{v} \text{Im}^{v}$

$\text{Im}^{v} \cap U^{-1} \text{Im}^{v}$

and the MV-intersections are

$K^{v} \cap K^{v} \cap U^{-1} \mathcal{K}^{v}$

and

$\text{Im}^{v} \cap U^{-1} \text{Im}^{v}$

An MV-cycle is an irreducible component of

$K^{v} \cap K^{v} \cap U^{-1} \mathcal{K}^{v}$ in LG^{v}/K^{v}.
Then, let \hat{G}_μ be a basis of $\mathcal{H}(G/B, X^\mu)$. Then

$$\text{Card}(\hat{G}_\mu) = \text{Card} (B(\lambda)_\mu) = \text{Card} (\text{Inv} (K^\tau K \cap U^{-\tau_\mu} K))$$

By Cassens-Littelmann and we know explicitly the bijection

$$B(\lambda)_\mu \leftrightarrow \text{Inv} (K^\tau K \cap U^{-\tau_\mu} K)$$
Modular Forms

Let \(\Lambda \) be a lattice of rank \(2g \) in \(\mathbb{C}^g \).

An abelian variety of dimension \(g \) is \(\mathbb{C}^g / \Lambda \) which can be embedded into projective space.

An elliptic curve is an abelian variety with \(g = 1 \).

A polarized abelian variety is a pair \((T, L) \) where

- \(T \) is an abelian variety
- \(L \) is an ample line bundle on \(T \)

Theta functions are elements of \(H^0(T, L) \).

Let \(\mathfrak{g} = \mathfrak{sp}(2g, \mathbb{R}) \) with \(\mathfrak{g}^+ = \mathfrak{sp}(2g, \mathbb{R})^+ \) and \(A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \).

There is a bijection

\[
\{ \text{polarized abelian varieties} \} \leftrightarrow \{ \text{polarized Hodge structures} \} \ 	ext{of weight } 1
\]

The Siegel upper half plane of degree \(g \) is

\[
G_g = \{ \tau \in \mathbb{H}^g \mid \tau^t = \tau \text{ and } \text{Im} \tau > 0 \}
\]

\(G_g \) is the period domain for polarized Hodge structures of weight \(1 \).

Then \(G_g \sim \mathbb{H}^g \mathbb{H} \mathbb{H}^g \mathbb{H} \mathbb{H}^g \) and

\[
\mathbb{G}_g = \mathbb{Sp}(2g, \mathbb{R}) / \mathbb{K} \text{ where } \mathbb{K} = \mathbb{Q}^{??} \text{ (a complete)}
\]
Let $d_1, \ldots, d_g \in \mathbb{Z}_{>0}$ with $d_1 + \cdots + d_g$ and $A = \begin{pmatrix} d_1 & \cdots & 0 \\ 0 & \cdots & d_g \end{pmatrix}$.

$\text{Sp}(A, \mathbb{Z}) = \{ M \in \text{GL}(2g, \mathbb{Z}) | M (0 A)^T M^T = (0 A) \}$

$\Gamma_A(n) = \{ M \in \text{Sp}(A, \mathbb{Z}) | M \equiv I_{2g} \pmod{n} \}$

Then

$\text{Sp}(A, \mathbb{Z}) \backslash G_g = \{ \text{polarized abelian varieties} \} = A_g$

$\Gamma_A(n) \backslash G_g = \{ \text{level } n \text{ polarized abelian varieties of type } d_1, \ldots, d_g \} = A_g(n)$

Modular forms of level n and weight k are elements of $H^0(Z_g(n), \mathbb{C}(k))$.