
Introduction
To reduce greenhouse gas emissions, many
people have switched from using fossil fuel
vehicles over to plug-in electric vehicles
(PEVs). However, this brings upon a new
dilemma: each person will make individ-
ually optimal charging decisions (such as
minimising electricity costs).
This is not globally optimal for the system,
as their decisions are uncoordinated and
potentially at odds with the power grid’s
goal of balancing power across time, result-
ing in unnecessary stress on the power grid.
My project involves modelling the vehicles
as agents in an aggregative game, in order
to reduce the stress on the power grid.
I will focus on the Forward-Backward al-
gorithm implementation, but many other
algorithm designs exist, such as the
Forward-Reflected-Backward and Forward-
Backward-Forward.

Electric Vehicle Modelling
Let xi ∈ Rn represent the the charg-
ing decisions chosen by each agent i ∈
I := {1, 2, ..., N} across a time horizon
of n = 24 hours. Each agent is al-
lowed to select charging decision from its
local decision set Ωi . To keep notation
light, x := col(x1, .., xi, ..., xN) and x−i =
col(x1, ...xi−1, xi+1, ...xN).
Modelling this problem as an aggregative
game gives a system of inter-dependent op-
timisation problems, where ∀i ∈ I:

argmin
xi∈Rn

Ji(xi,x−i) := gi(xi) + p(avg(x))Txi (1a)

s.t. xi ∈ Ωi (1b)∑N
i=1xi(t) ≤ NK(t), ∀t = 1, ...n (1c)

The Cost Function - (1a) the gi term mod-
els the individual costs of the agent, such
as battery degradation, or penalty when the
agent does not adhere to a prefered charg-
ing strategy. The p(avg(x))Txi term models
the energy price, and contains information
such as the non-electric-vehicle energy de-
mand (Fig. 1).
The Local Decision set - (1b) models the
decisions available to the agent.

The Coupling Constraint - (1c) models the
max power the grid can deliver to the elec-
tric vehicles (for a given time).
The optimisation problem can be charac-
terised in terms of the Karush-Kuhn-Tucker
conditions (a generalisation of the method
of Lagrange multipliers). Solving this is
equivalent to finding the zeros of an opera-
tor. Then using techniques of monotone op-
erator splitting, Algorithm 1 can be formed.
Solving the optimisation problem (1) would
mean obtaining x∗i , for all i ∈ I, such that:

Ji(x
∗
i ,x

∗
−i) ≤ inf{Ji(y,x∗

−i) | y ∈ Xi(x
∗
−i)}

Such solutions are known as a generalised
Nash equilibrium (GNE). With Xi(x∗

−i) being
the set of feasible decisions for each agent,
meaning the set contains decisions xi which
satisfy both (1b) and (1c).

Figure 1: Approximate non-electric-vehicle
energy demand across 24hrs, modelled as
a sinusoidal function, with peak power de-
mand occuring at about 3pm

Research Experience
Despite not being able to be in person at the
University to do this project, I still found
this to be a fun and enjoyable experience.
Learning how to extract the important in-
formation, and diving further into the other
papers referenced, was quite an adventure.

I also had the great opportunity to attend
talks from conferences such as WoMBaT
and AustMS, and gained experience giving
a short talk about my research to the other
students under my supervisor.

Algorithm 1
Preconditioned Forward-Backward (pFB)

Initialisation: δ > 1
2γ

;∀i ∈ I, x0
i ∈ Rn,

0 < αi ≤ (||In||+ δ)−1;λ0 ∈ Rn
≥0

0 < β ≤ ( 1
N

∑N
i=1||In||+ 1

N
δ)−1

Iterate until convergence:
1. Local: Strategy update, for all i ∈ I:
yki = xki − αi[∇xip(avg(x))Txi + λk]
xk+1
i = proxαigi+ιΩi

(yki )

dk+1
i = 2xk+1

i − xki −K

2. Central coordinator: dual variable update
λk+1 = projRn

≥0
(λk + β avg(dk+1))

Graphical Results:

Figure 2: Initial random decisions of 20
agents, each colour represents a unique
agent’s charging decision across the 24
hours

Figure 3: Final converged decisions, notice
how this graph opposes Fig 1, in an attempt
to evenly distribute power across time. Con-
vergence considered when:
|| col(xk, λk)− col(xk+1, λk+1)|| < 10−5
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