Critical points of a spin glass model over a torus

Aaron Singh

University of Melbourne

Spin glasses
Roughly speaking, a spin model can be thought of as a mathematical model that models interactions between particles in a lattice

The Hamiltonian H for a general spin model is

$$
H\left(\boldsymbol{\sigma}=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}\right)=\sum_{i j} J_{i j}^{(2)} \sigma_{i} \sigma_{j}+\sum_{i j k} J_{i j k}^{(3)} \sigma_{i} \sigma_{j} \sigma_{k}+.
$$

where $\left\{J_{i_{1}, \ldots, i_{k}}^{(k)}\right\}$ are constants representing k-point interactions.
A spin glass replaces the constants $\left\{J_{i_{1}, \ldots, i_{k}}^{(k)}\right\}$ with random variables.
A canonical example of a (mean field) spin glass model is the so-called p-spin spherical spin glass model, described by Hamiltonian:

$$
H\left(\boldsymbol{\sigma}=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq N} J_{i_{1}, \ldots, i_{p}}^{(p)} \sigma_{i_{1}} \ldots \sigma_{i_{p}}
$$

where $\left\{J_{i_{1}, \ldots, i_{p}}^{(p)}\right\}_{1 \leq i_{1}<i_{2}<\ldots<i_{p} \leq N}$ are independent, identically distributed (i.i.d.) normal (Gaussian) random variables with 0 mean, and the "spins" $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$ are real numbers satisfying a constraint,

$$
\sum_{i=1}^{N} \sigma_{i}^{2}=1
$$

Note that the Hamiltonian H is a random function on the unit sphere S_{N-1}, hence the name spherical spin glass model.

The Kac-Rice formula

Of particular interest is the expected number of critical points of a random function, which we can find by applying the so-called Kac-Rice formula to the gradient field.
Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a random conservative vector field with sufficiently nice realisations. Over some volume V , the Kac-Rice formula says that

$$
\mathbb{E}[\# \operatorname{Zeroes}(f)]=\int_{V} \int p_{x}(0, M)|\operatorname{det}(M)| d x d M
$$

where:

- $d M=\prod_{i=1}^{N} d M_{i i} \prod_{1 \leq i<j \leq N} d M_{i j}$ is the flat measure on symmetric matrices - $p_{x}(v, M)$ is the joint probability density of the random vector field f and the corresponding Jacobian matrix field at location x .

Spin glass model over a torus

Rather than explore the well-known case of a spin glass over a sphere, we will look at a random function on a torus, i.e. a torodial spin glass model
The family of models we will focus on is described by Hamiltonian

$$
H(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}^{N}} c_{\boldsymbol{k}} \xi_{\boldsymbol{k}} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

where:

- $\boldsymbol{x} \in T^{N}=[0,2 \pi)^{N}$ is the N -dimensional torus.
- $\xi_{k}=X_{k}+i Y_{k}$ are independent complex random variables such that X_{k} and Y_{k} are i.i.d. normal random variables with mean 0 and variance $\frac{1}{2}$.
- $\left(c_{k} \xi_{k}\right)^{*}=c_{-k} \xi_{-k}$ (this ensures that H is a real valued function)
- $c_{\boldsymbol{k}}$ are constants that depend only on $\|\boldsymbol{k}\|_{2}$ and decays sufficiently fast.

Examples

We can numerically approximate and graph a few realisations in the $N=1$ and $N=2$ case easily.
$\underline{N=1, c_{k}=1 / k!}:$
$\mathbb{E}[\#$ Critical $\operatorname{Points}(H)] \approx 3.6854$

$N=2, c_{\boldsymbol{k}}=\frac{1}{1+\|\boldsymbol{k}\|_{2}^{20}}:$
$\mathbb{E}[\#$ Critical Points $(H)] \approx 4.03008$

Applying the Kac-Rice formula

In applications, often critical points of the Hamiltonian have significance. We can find the expected number of critical points of H by applying the Kac-Rice formula to ∇H.
The Hamiltonian of the torodial spin glass model is a zero mean Gaussian funcion, thus the joint probability distribution of the random vector $\nabla H(x)$ and the random matrix Hess (\boldsymbol{x}), the hessian of $H(\boldsymbol{x})$, is zero mean multivariate norma. The covariance matrix is organised such that the joint density p is given by

$$
p(\boldsymbol{v}, M)=p\left(\boldsymbol{y}=\left[\begin{array}{c}
\boldsymbol{v} \\
\operatorname{svec}(M)
\end{array}\right]\right)=\frac{1}{(2 \pi)^{\frac{N(N+3)}{4}} \sqrt{\operatorname{det} \Sigma}} e^{-\frac{1}{2} \boldsymbol{y}^{T} \Sigma^{-1} \boldsymbol{y}}
$$

where

$$
\cdot \operatorname{svec}(M)=\left[\begin{array}{llllllll}
M_{11} & M_{22} & \ldots & M_{N N} & M_{12} & M_{13} & \ldots & M_{N-1, N}
\end{array}\right]^{T}
$$

- $\Sigma=\mathbb{E}\left[\boldsymbol{y} \boldsymbol{y}^{T}\right]$

In the torodial model, we have

$$
\left.\Sigma=\left[\begin{array}{ccc}
a \mathbb{1}_{N} & 0 & 0 \\
0 & c u u^{T}+(b-c) \mathbb{1}_{N} & 0 \\
0 & 0 & c \mathbb{1}_{\frac{N(N-1)}{2}}
\end{array}\right], u=\left[\begin{array}{lll}
1 & 1 & \ldots
\end{array}\right]\right]^{T}
$$

where:

- $a=\frac{1}{N} \sum_{k \in \mathbb{Z}^{N}}\|\boldsymbol{k}\|_{2}^{2}\left|c_{k}\right|^{2}$
- $b=\frac{1}{N} \sum_{\boldsymbol{k} \in \mathbb{Z}^{N}}\|\boldsymbol{k}\|_{4}^{4}\left|c_{\boldsymbol{k}}\right|^{2}$
- $c=\frac{1}{N(N-1)} \sum_{\boldsymbol{k} \in \mathbb{Z}^{N}}\left(\|\boldsymbol{k}\|_{2}^{4}-\|\boldsymbol{k}\|_{4}^{4}\right)\left|c_{\boldsymbol{k}}\right|^{2}$

The convenient structure of the covariance matrix makes it clear that $p(\boldsymbol{v}, M)$ factorises as

$$
p(\boldsymbol{v}, M)=\frac{e^{-\frac{1}{2} v^{T} \boldsymbol{v}}}{(2 \pi a)^{N / 2}} \cdot \frac{e^{-\frac{1}{2} \operatorname{svec}(M)^{T} \sigma^{-1} \operatorname{svec}(M)}}{(2 \pi)^{\frac{N(N+1)}{4}} \sqrt{\operatorname{det}(\sigma)}}=\frac{e^{-\frac{1}{2} v^{T} \boldsymbol{v}}}{(2 \pi a)^{N / 2}} \cdot q(M)
$$

where $q(M)$ is the density function of $\operatorname{Hess}(\boldsymbol{x})$ and $\sigma=\left[\begin{array}{cc}c u u^{T}+(b-c) \mathbb{1} & 0 \\ 0 & c \mathbb{1}\end{array}\right]$
It follows from the Kac-Rice formula that

$$
\mathbb{E}[\# \text { Critical Points }(H)]=\frac{V}{(2 \pi a)^{N / 2}} \mathbb{E}[|\operatorname{det}(M)|]
$$

The model is 2π-periodic, so it makes sense to set the volume $V=[0,2 \pi)^{N}$ Then $\int_{V} d x=(2 \pi)^{N}$, so

$$
\mathbb{E}[\# C r i t i c a l \operatorname{Points}(H)]=\left(\frac{2 \pi}{a}\right)^{\frac{N}{2}} \mathbb{E}[|\operatorname{det}(M)|]
$$

The $N=1$ case can go a step further, we get

$$
\mathbb{E}[\# \text { Critical Points }(H)]=2 \sqrt{\frac{\sum_{k \in \mathbb{Z}} k^{2} c_{k}^{2}}{\sum_{k \in \mathbb{Z}} k^{4} c_{k}^{2}}}
$$

Acknowledgements

[^0] Mathematics and Statistics for giving me the opportunity to participate.

[^0]: I would like to express my sincerest gratitude to my supervisor Dr. Jesper Ipsen, for his considerable patience and encouragement over the course of the vacation

