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1. Introduction
The ‘Minimum Multi-Source Multi-Sink Steiner Network Problem’ (MMMSNP) is a directed optimal interconnection problem in the plane. It asks,
given source set, A and sink set, B, for the shortest directed geometric network, N =

(
V (N), E(N)

)
, where each a ∈ A has a path to every b ∈ B. It is

closely related to the undirected Steiner network problem in the plane; where given a set of n points called terminals, T = {t1, ..., tn}, construct a shortest
geometric network N =

(
V (N), E(N)

)
so all terminals are connected. This has been studied extensively and so, we have a fast, exact algorithm, despite

the problem being NP-hard. In comparison, the MMMSNP in the plane is relatively unexplored, so we lack an efficient, exact algorithm.

2. Preliminaries
Structural Fundamentals: [1]

• Local geometries of Steiner points have
been exhaustively described

Algorithmic Fundamentals: [2]

• GeoSteiner is an algorithm for undirected
networks by generating then concatenat-
ing full networks

• Point generation: for ordered pairs of
equilateral points, generate epq if Z(p) ∪
Z(q) = ∅ and |Z(p)| + |Z(q)| < n

• The first algorithmic framework is seen in
[3], by overlaying undirected networks and
a mixed-integer program

3. Steiner Arcs for MMMSNP

We generalise Steiner arcs to extend the Melzak
algorithm for higher degrees.

4. A Representation for Pseudo-Terminals
Each pseudo-terminal will have a unique representation. For degree 3, 4, 5 and 6 pseudo-terminals;

(a, b) ({a, b}, c) ({a, b}, c, d) ({a, b}, {c, d}, e)

5. Pseudo-Terminals without Pruning
We remove restrictions to achieve an upper bound given by the number of ‘properly’ parenthesised
expressions with any positive number of elements between parentheses or number of solutions to the
integer equation,

x1 + . . . + x2ord(pt)−1 = Z(pt) − 2 (1)

These two options give an upper bound for the number of pseudo-terminals,

p(n) < (n + 1)! × Mn =⇒ p(n) ∈ O
(
Mn × (n + 1)!

)
(2)

p(n) < (n + 1)! ×
(

3n − 8
n − 3

)
=⇒ p(n) ∈ O

((
3n − 8
n − 3

)
× (n + 1)!

)
(3)

Where Mn is the nth Motzkin number, a sequence with exponential asymptotic behaviour.
By considering pseudo-terminals of order n − 2, |Z(pt)| = n − 1, we bound below by n!, which is
why we need pruning techniques.

6. TSP Approximation
• Take a minimum (A, B)-network, chang-

ing single arcs to double arcs. Length
represents a full-traversal through Steiner
points - at most double the original length

• The shortest Hamiltonian cycle approxi-
mation completes the same traversal with-
out Steiner points so by triangle inequal-
ity, the TSP solution is 2-optimal

• We use shortest Hamiltonian cycles to
prune full Steiner networks

7. TSP Example

8. Numerical Results
We generate 10000 random pseudo-terminals on 12 terminals, with a uniformly generated location.
We use these to test pruning conditions on pseudo-terminals with feasibility of Steiner arcs and angle
conditions.

N proportion pruned N∗ #pruned/N∗

10000 0.3634 4325 ∼ 0.84

The rest can be pruned effectively by the tests in [2]. The TSP always gives a cycle in the shape of a
simple polygon - so we can compare the area bounded by the TSP with the area of the convex hull.
In this experiment, we stretch the terminals adjacent to s1 in the network shown above.

The left diagram shows the difference between the distance of the shortest Hamiltonian cycle and the
total length of the network, the right diagram shows the ratio of the area bounded by the shortest
Hamiltonian cycle and the convex hull.
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