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Background

The entanglement entropy of a bipartite or two-part quantum system is
a characteristic measuring the quantum correlation between two subsys-
tems A and B. Recent research in this field has unveiled the increasing
importance of this quantity.
Given a density matrix of a pure quantum state ρ = |ψ⟩⟨ψ|, the reduced
density matrix is

ρA = trB ρ

and the entanglement entropy is

SA = − tr (ρA log(ρA)) .

This project studies the average entanglement entropy of composite,
pure quantum states with a fixed number of particles in the thermody-
namic limit.

The System

We consider the general setting of a system with a set of V sites. Each
site is described by an identical local Hilbert space Hloc. It decomposes
into a direct sum over the number of indistinguishable particles Nloc

that it holds:
Hloc =

⊕
Nloc

H(Nloc)
loc .

The dimension of the Hilbert space H(Nloc)
loc is a positive integer equal

to the number of ways to place Nloc indistinguishable particles into V
distinguishable sites.
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Fig. 1: An example of Hloc, which holds particles in separate sub-sites.

Furthermore, the whole system is described by

H =
V⊗
i=1

Hi,

where Hi is a copy of Hloc at the site labelled i.

Dimension

Let us denote dN = dimH(N) and aNloc
= dimH(Nloc)

loc . It turns out that
dN is the zN -coefficient of the polynomial expansion

dN = [zN ]
(
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2 + . . .
)V

=
1
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∮
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k
)V
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where C is a contour enclosing the origin. We introduce ψ(z) =
log

(∑∞
k=0 akz

k
)
− n log(z), let V approach infinity and evaluate the in-

tegral using the saddle-point method, which gives:

dN =
1

z0
√

2πψ′′(z0)V
eV ψ(z0) + o(1), (⋆)

where z0 is a solution to ψ′(z) = 0.

Average Entanglement Entropy

Take a bipartition of the system into subsystem A with VA sites and
subsystem B with V −VA sites. We fix n = N

V
and f = VA

V
as constants,

and take the thermodynamic limit V → ∞. Using the main result of
Bianchi’s paper [1], it follows from (⋆) that the average entanglement
entropy is:

⟨SA⟩N = β(n)fV +
f + log(1− f)

2
− β′(n)√

−2πβ′′(n)

√
V δf, 1

2
+ o(1).

Note the following:

• it only depends on the exponential scaling of the dimension.

• the leading order term is proportional to the volume of the sub-
system, and thus, the volume of the system.

• the constant term is universal throughout all systems with indis-
tinguishable particles. We certainly did not expect the leading
term to be different, but the constant term to be the same.

Fig. 2: Leading entanglement entropy sA = limV→∞
⟨SA⟩N
V for the JCH

model. Left: 3-D plot as a function of n and f . Right: Plots at fixed n as

functions of f . The coloured lines agree in both plots.

The Jaynes-Cummings-Hubbard (JCH) Model

As an explicit example of a system, take the JCH model. Each site
has a photonic cavity, which admits an arbitrary number of photons,
and a 2-level atom, which can be thought of as having a maximum of 1
particle. Each non-empty site has two arrangements - either the atom
is excited or not - so a0 = 1 and aj = 2 for all j ̸= 0.

Fig. 3: A diagram of the 1-D JCH model [2], with coupling strengths κ, β.

We find that

dN =
1√

2πn
√
1 + n2V

eV [arcsinh(n)−2n arctanh(n−
√
1+n2)] + o(1),

which leads to the entropy

⟨SA⟩N = fV [arcsinh(n)− 2n arctanh(n−
√
1 + n2)] +

f + log(1− f)

2

+

√
2n

√
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π
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√
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√
V δf, 1

2
+ o(1).
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An astounding result! It shows that no matter the structure of H(Nloc)
loc , the

total dimension dN scales as α(n)√
V
eβ(n)V . The following results apply to all

systems of indistinguishable particles with a local Hilbert space structure.


