Typical entanglement entropy in composite systems with fixed
particle number

Yale Cheng, supervised by Lucas Hackl

The University of Melbourne

Background

The entanglement entropy of a bipartite or two-part quantum system is
a characteristic measuring the quantum correlation between two subsys-
tems A and B. Recent research in this field has unveiled the increasing
importance of this quantity.
Given a density matrix of a pure quantum state p = |¢))(¢|, the reduced
density matrix is

pa =trpp

and the entanglement entropy is

Sa=—tr(palog(pa)).

This project studies the average entanglement entropy of composite,
pure quantum states with a fixed number of particles in the thermody-
namic limit.

The System

We consider the general setting of a system with a set of V' sites. Each
site is described by an identical local Hilbert space Hjo.. It decomposes
into a direct sum over the number of indistinguishable particles N,

that it holds:
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The dimension of the Hilbert space 7-[1(5\0[‘“) is a positive integer equal
to the number of ways to place NV}, indistinguishable particles into V'

distinguishable sites.
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Fig. 1: An example of Hj,c, which holds particles in separate sub-sites.

Furthermore, the whole system is described by

where H; is a copy of Hy.. at the site labelled .

Let us denote dy = dim H®™) and ay,,, = dim Hl(é?“). It turns out that
dy is the z"-coefficient of the polynomial expansion

dy = [2V] (a0+a1z—|—a222+...)v
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where C' is a contour enclosing the origin. We introduce ¥(z) =
log(zzozo akzk) —nlog(z), let V approach infinity and evaluate the in-
tegral using the saddle-point method, which gives:
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where z is a solution to ¢'(z) = 0.

dy = V) o(1), (*)

An astounding result! It shows that no matter the structure of ,sz)v 1°°), the

total dimension dy scales as @eﬁ(”)v. The following results apply to all

systems of indistinguishable particles with a local Hilbert space structure.
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Average Entanglement Entropy

Take a bipartition of the system into subsystem A with Vj sites and
subsystem B with V —V sites. We fix n = % and f = VVA as constants,
and take the thermodynamic limit V' — co. Using the main result of
Bianchi’s paper [1], it follows from (%) that the average entanglement
entropy is:

f+log(l—f)
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(Sa)y = B)fV + =2 =

Note the following:
e it only depends on the exponential scaling of the dimension.

e the leading order term is proportional to the volume of the sub-
system, and thus, the volume of the system.

e the constant term is universal throughout all systems with indis-
tinguishable particles. We certainly did not expect the leading
term to be different, but the constant term to be the same.
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Fig. 2: Leading entanglement entropy s4 = limy _, <S{‘/>N for the JCH

model. Left: 3-D plot as a function of n and f. Right: Plots at fixed n as
functions of f. The coloured lines agree in both plots.
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The Jaynes-Cummings-Hubbard (JCH) Model

As an explicit example of a system, take the JCH model. Each site
has a photonic cavity, which admits an arbitrary number of photons,
and a 2-level atom, which can be thought of as having a maximum of 1
particle. Each non-empty site has two arrangements - either the atom
is excited or not - so ag = 1 and a; = 2 for all j # 0.

Fig. 3: A diagram of the 1-D JCH model [2], with coupling strengths &, 3.

We find that
1

= e
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which leads to the entropy

dN V]arcsinh(n)—2n arctanh(n—+v/1+n2)] + 0(1),

(Sa)y = fV]arcsinh(n) — 2n arctanh(n — V1 + n?)| + I log2(1 = /)
/ P
Znvitn® arctanh(n — v'1 + nz)\/Vch 1+ o(1).
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