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Introduction

Magnetotactic bacteria (MTB) orient themselves to align with magnetic field like a compass nee-
dle. Here we study the swimming trajectory of a single MTB under the influence of magnetic

field.

Model

Rotating magnetic field

= Assume the bacteria has magnetic moment m which is parallel to its orientation.
= The particle swims at a constant speed v, in the direction of its orientation vector.
= We assume the Reynolds number in our problem is zero.

= The magnetic field rotates anticlockwise in a constant angular speed .
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(a) An image of MTB captured in the Brumley lab. (b) A diagram illustrating the system.

Governing equations:
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where 7.4 = —8mpa’d and 7 is the position vector of the bacteria.

Stationary uniform magnetic field

This is the special case where €2 = 0 and we are able to obtain an analytical solution for 7 :

= v 1+ 1 v 2v N
r(t) = (ra(t), ry(t)) = (Ut - Elog (1 —|—1262kt> T T arctan (le kt))

where k = %, and the unit of k is s~1. which can be understood as the alignment rate of the
bacteria to the magnetic field.
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Figure 2. Typical trajectories under different initial conditions.
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Time and length scale of trajectory

It turns out that the time and length scale of the trajectory is controlled by some parameters.
= For stationary uniform magnetic field,

t
b

This means for different k values, the geometry of the trajectory won't vary. However the
length scale and the time scale of the trajectory will change accordingly.
= For rotating uniform magnetic field,

o(bk,~) = (K, t)

t
b
This means for same % ratio, the geometry of the trajectory won't vary, given we look at it

on a different time and length scale.
This is important since it tells us that % determines the geometry of the trajectory!

(b, bk, ) = 0(, k, 1)

This is when the magnetic field rotates with a constant angular speed, and the dynamic of the
M| B|

S 110 Is proportional to the

system is characterised by % which we will discuss separately. k =
magnetic field strength.
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Figure 3. Typical trajectories under different initial conditions when 2 < k.

" For% < 1, the bacteria is able to catch up with the magnetic field, and keeps a stable angle
between its orientation and the direction of magnetic field as shown in (b). The magnetic field
then applies a constant torque on the bacteria, causing it to swim in a stable circular

trajectory. The radius of the stable circular trajectory is given by r ~ ¢.

= When % = 1, the stable angle is 5. This is when the magnetic field can just keep the bacteria

In a stable circular trajectory. If Q) is greater than k, then the stable circular trajectory is ruined,

which leads us to the case where % > 1.
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Figure 4. Some example trajectories when Q > k.

It was discovered that the particle will retrace its trajectory if and only if the following equality is
satisfied:

() Ny
k

" If ny =1, then % satisfying the equality describes trajectories that will progress in a linear
fashion, like the one shown in Figure 4(b).

" Ifny # 1, then % satisfying the equality describes trajectories that retrace themselves, like the
one shown in Figure 4(e).

Stochastic trajectories

= Explore the trajectory of MTB in a more realistic setting by introuding a noise term.
= Simulation using RK4 method with step size h = 0.01 second.
= Control the geometry of the determinisitc trajectory (i.e. keep % fixed).

= Try to understand how the magnetic field and the viscosity of fluid affect the stochastic
trajectory.

Runtime =~ 50 mins

B =85, k= 0.010345, viscosity = 0.1, runtime = 2783.2744s

Runtime =~ 5 mins

B = 65, k = 0.10345, viscosity = 0.01, runtime = 278.3274g
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Runtime = 77 hrs

B = 0.65, k = 0.00010345, viscosity = 0.1, runtime = 278327.4415s
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Figure 5. Simulated stochastic trajectories under extreme values of viscosity and magnetic field strength. The
closed polygon-like trajectory is the deterministic trajectory under same conditions to be compared against the
stochastic trajectories.

Inspired by the above figure, we investigate two situations and developed the following under-
standing:

1. For a fixed magnetic field strength, changing viscosity would result in same stochastic
behaviour on a different time and length scale. See the left figure below.

2. On the other hand, for a fixed viscosity, a stronger magnetic field would result in a less
deviated stochastic trajectory. See the right figure below.
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Figure 6. Left figure shows the effect of viscosity on the stochastic trajectory when magnetic field strength and %
are fixed. Right figure shows the effect of magnetic field strenght on the stochastic trajectory when viscosity and
are fixed.
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