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1. An Important Problem

In June 2021, Victoria saw an uptick of COVID-19 Delta-strain cases which led to several

lockdowns. We aim to understand the dynamics of COVID-19 under the lockdown

restrictions. In this project, we explore the use of Particle-Marginal Markov Chain

Monte Carlo (pMCMC) to infer dynamics of Victoria’s COVID-19 Delta wave from

June to mid-November 2021. Particularly we are interested in the parameters:

• Reproduction number (R0) - the average number of secondary infections caused

by an infected host,

• Observation probability (Pobs) - the probability that an infected individual becomes
a case, and

• Infectious period (
1
�) - the average duration of an infection.

2. Model

We implemented an exact Bayesian approach using particle Markov chain Monte Carlo

(pMCMC) [1] with a bootstrap particle filter (PF) to estimate the likelihood of obser-

vations. The PF [Fig. 1] acts to estimate the likelihood by generating p particles which

can be thought of as ’random’ hypotheses of points belonging to the posterior density

which are recursively weighted and resampled.The likelihood estimate from the PF is

then incorporated into the usual MCMC algorithm to make inference on parameters of

interest.

Fig. 1: Flowchart of a pMCMC routine (left) using a bootstrap particle filter(right). *Note: Pobs
here is defined as the

probability of observing the particles, it is not the same as the Pobs referred to in Section 1. Sourced from [3]

We assumed the underlying epidemic-model of the COVID-19 Delta strain as an SIR

model with a Poisson observation process where:

Ct ⇠ Poisson((�Rt + ✏)Pobs),

where Ct is the number of cases on day t, and �Rt is the number of newly recovered

individuals. In this project, we also included a small constant ✏ added to �Rt to prevent

numerical errors in the case where �Rt is zero.

This observation process reflects the plausible situation that the average observed counts

of those reported infectious are less than the true values. This is often referred to as

compensating the under-reporting rate.

Fig. 2: SIR Model and demonstration of Pobs being the relationship between compartment R and the reported daily Delta cases. N is the

VIC population in June 2021

Due to the time-frame of our data being short and the Victorian border restrictions reinforcing

minimal change in state population, our SIR model does not account for population turnover.

Vaccines were assumed ’perfect’. i.e. vaccinated people were counted as recovered population.

3. Results

Fig. 3: COVID-19 Delta daily cases from June to mid-November 2021

Fig. 4: Trace plots of parameters

Our model was run with 50 particles and 5000 iterations, occupying a run-time of 45

hours. These simulations provided parameter estimates:

Parameter Estimate (Median) Standard Deviation

R0 7.864 0.0193

1
� 7.877 0.0137

Pobs 0.600 0.0002

Our results show that on average, a single infected person can be expected to transmit

COVID-19 to just under 8 people, a person with the disease is contagious for just over

a week and the probability that we observe an infected individual as recovered is 60%.

We acknowledge the limited number of iterations and particle use in these results;

which was a consequence of the extremely high computational-cost of pMCMC with

large scale population sizes.

4. Remarks

• Our trace plot results reveal the di�culty in mixing from pMCMC.

• Pobs was lower than we expected, leading us to slightly question if there could

be an identifiability issue [2].

• We witnessed that configuration of the particle filter can significantly e↵ect re-

sults; it was important to have a large number of particles for the acceptance

rates in MCMC to avoid becoming too low.

• It is recommended that a super computer and ample time for running code is

used for future re-runs of this method to allow for greater numbers of iterations

and particles. Due to our restricted performance, we would like to highlight the

findings in this project as preliminary insights at best.
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