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The Protein Folding Problem

Proteins are large and
complex molecules that form
the basic building blocks of
life. They are responsible for
essential tasks such as
forming antibodies and
transporting and storing
nutrients. Since a protein's
three dimensional (3D)
structure has a tangible impact
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on its function and utility, 0
much of recent work In
niology pertains to solving the
Protein Folding Problem: to
oredict the 3D shape of any
protein given Its contiguous
chain of amino acids.

Figure 1: AlphaFold accuracyl

AlphaFold’s Significance

Hence, AlphaFold's success stems from its ability to
understand concepts, reason from them and create original
knowledge. This builds upon the previous success
achieved by DeepMind in narrow domains with man-made
rules, such as Chess and Go. However, in solving the
Protein Folding Problem, AlphaFold has allowed Al to
make the jump to solving fundamental biological
problems that could tangibly impact humanity in the years
to come.

Therefore, AlphaFold's success is like a stepping-stone
In the Al development journey, bridging the gap between
narrow domains that demand strategy, and gaining brain-
like capabilities to not only solve problems in nature, but
Identify them. This potential demonstrates that achieving
Intelligence more sophisticated than what we thought
possible i1s now within arm's reach.

Adaptive Computation Time

Adaptive Computation Time (ACT), first introduced In
[3], Is @ mechanism that allows Networks to dynamically
learn how many repetitions to "ponder" its input before
outputting the next state. ACT Is achieved through
Invariant Point Attention (IPA) and recycling.

IPA Is a new type of attention that acts on a set of
frames which are parameterised in the structure module as
Euclidean transforms. Recycling is achieved through
using the previous cycle's output as the new cycle's input.
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Figure 2b: interpreting ablation [*]

Although the ablation studies show neither recycling
nor removing IPA independently affects accuracy greatly,
the removal of both has a significant effect. Thus, It Is
reasonable to think this ablation causes a significant
Increase in the number of "wrong" models AF must
compute.

Figure 2b supports the hypothesis that recycling during
training Is a variant of ACT that directs additional training
resources to low-confidence segments of the structure.

Communication

he Evoformer has two avenues of communication.

Figure 3: Evoformer structure [

def MSARowAttentionWithPairBias({mg;}, {Zij}, ¢ = 32, Nheada = 8) :

# Input projections
I: mg; +— LayerNorm(mg;)
2: qP, k", v = LinearNoBias(my;) q kM v e R°, h e {1,..., Nhead}

3: bg} = LinearNoBias(LayerNorm(z;;))

4: gl = sigmoid (Linear(my;)) gh € R°

# Attention

R h h
.o~ h h .h

6: Og; = 8g; @D Agii Vs,

# QOutput projection

7: m.; = Linear (cﬂncath [ﬂft-)) mg; € R

8: return {mg;}

Algorithm 1: Row attention with pair bias [l
Attention begins In line 5, where the pair bias is added

g - Kbl
to the standard argument (— jzf <) of the SoftMax
function:
Zj
softmax(z); = ¥ 7

The bias term conveys prior hypotheses regarding the
distance between residues 1 and j. Moreover, additive bias
conveys a sense of Boolean logic. [

Gates

Gating Is a concept that was developed to remedy
Short-Term memory in RNN’s. Pl These gates learn what
Information is relevant and thus should be remembered,
and what should be discarded. This Is achieved through
the sigmoid function

1

0(z) = 1+e %

which squeezes values between 0 and 1.

def TriangleAttentionStartingNode({zi;j},c = 32, Nheaga = 4) :

# Input projections

1: zij + LayerNorm(z;;)

2: qi-‘j, l{%?v% = LinearNoBias(z;;) q%?ki-‘j._ v%- eR he{l,..., Nheaa!}
3: bl = LinearNoBias(z;)

1: gl = sigmoid (Linear(z;;)) gl €R°
# Attention

5: a%k = softmax; (%{,E qi}Tl{ﬁ: + b?k)

6: 03 = &5 O D Al Vik
# Output projection

7: Zij = Linear (cﬂncath[ﬂ%}) Zi; € R

8 return {Z;}

Algorithm 2: triangular attention in the Evoformer [1a]

The element-wise multiplication by g% in algorithms 1
and 2 1s strongly reminiscent of an output gate from
LSTM’s. The lack of forget and input gate implies that the
authors do not necessarily want to sacrifice any prior
Information. .

def TriangleMultiplicationOutgoing({z;;},c = 128) :

I: zi; + LayerNorm(z;;)

2 a;;, by; = sigmoid (Linear(z;;)) © Linear(z;;) a;;, b;; € R°
% g; = sigmoid (Linear(z;;)) g ER™=
4 Zi; = gi; © Linear(LayerNorm(» ;. ai: © bji)) Zi; € R™

5 return {Z;;}

Algorithm 3: outgoing multiplicative triangular updates [*]

This layer utilises two gates: one In line and the other In
line 3

The first gate Is representative of [6]. This extracts
Information more efficiently due to the gradient
advantages, although one difference between here and [6]
IS additional parameters.

The output gate performs a similar role to the attention
output gate In regulating plausible structural predictions to
ensure computation Is not wasted.

Conclusion

The three features discussed contribute greatly to
AlphaFold’s success. However, they are also extremely
general, and their interpretation links to reasoning quite
naturally. Hence, these choices were made by DeepMind
with the connection to thinking and reasoning in mind.
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