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INTRODUCTION
The objective of this project is to discover the properties and behav-
iors of iterative optimization algorithms such as gradient descent
from the perspective of a continuous dynamical system to give a
clearer interpretation and deeper understanding of the algorithm The
problem is defined as:

min
x∈Rd

f(x)

where f : Rn → R is convex and differentiable. The iterative algo-
rithms include gradient descent, the heavy ball with friction method,
Nesterov acceleration, ravine method, and a new method called
adaptive gradient descent without descent method [1] would be
studied.

DYNAMICAL SYSTEM
There are two types of dynamical system.
Discrete system describes an iterative map (a sequence of xn with
xn+1 = f(xn) for some function f : Rn → Rn)

Continuous system is represented by a dynamic(differential equa-
tion).The definitions of dynamics could be described as follows:

Definition of dynamic:
A dynamics is defined via a differential equation: ẋ(t) = h(x(t)))
where h : R⋉ → R⋉ is a vector field that assigns the velocity vector
f(x) to each point x in space, which specifies the next direction of a
point(instantaneous future).

DERIVING CONTINUOUS DYNAMICS AND DISCRETISATION

From discrete to continuous To begin with an example, the most clas-
sical iterative algorithm: Gradient Descent is used.
Gradient Descent: xk+1 = xk − λ∇f(xk) where λ > 0 is step size
Suppose x(t) is a continuous curve with x(λk) = xk, x(t + λ) =
x(t)− λ∇f(x(t))

Rearranging to get x(t+λ)−x(t)
λ = −∇f(x(t)) take limit as λ → 0 to get

the continuous dynamical system of gradient descent: gradient flow.
Gradient Flow (GF): continuous dynamic of Gradient Descent ẋ(t) =
−∇f(x(t)) with initial condition: x(0) = x0.
Figure 1 further illustrates the difference between gradient flow and
gradient descent by showing the trajectories of two algorithms that
are experimented with for the same logistic regression optimization
problem. The trajectory of gradient descent is less smooth than gradi-
ent flow.

Figure 1: Comparison between Gradient Descent and Gradient flow from:
https://francisbach.com/gradient-flows/

From continuous to discrete: Discretisation
After obtaining the continuous dynamics, various discretisation meth-
ods that discrete the differential equation could explore new optimi-
sation method with similar convergence rate. There are mainly two
types of discretisation method.
Forward Euler:

x(tk+1) ≈ xk+1 = xk + h∇f(xk, tk)∀k ∈ N

By using forward euler discretization to gradient flow by rearranging
equation, we could obtain back to the gradient descent algorithm
Backward Euler:

x(tk+1) ≈ xk+1 = xk + h∇f(xk+1, tk+1)∀k ∈ N

By using backward euler discretization that use gradient value of the
next iteration, we could yield another algorithm proximal point algo-
rithm. The derivation is provided as follows

xk+1 = xk − λ∇f(xk+1)

xk+1 + λ∇f(xk+1) = xk

(I + λ∇(f))(xk+1) = xk

Since I +λ∇(f) is invertible, and (I +λ∇(f))−1 is equivalent to prox-
imity operator proxλf
So xk+1 = proxλf xk = argminy∈Rn{f(y) + 1

2λ (||y − xk||)2}

Continuous
DynamicsDiscrete Algorithm

New Discrete
Algorithm

Take limit of stepsize to 0 discretization method

OTHER ALGORITHMS AND INTERPRETATIONS

Other than the first-order dynamical system in Gradient flow, second-
order dynamical system is also commonly used in a variety of iterative
algorithms.

Heavy ball with friction(HBF)
The heavy ball with friction system could be described as a second-
order (in time) dissipative dynamical system, which has mechanical
interpretations [2]. This system models the motion of a heavy material
point M(t) = (x(t), f(x(t))) sliding on f . By Fig.2 It could be proved
that this method would converge to a better local minimum point x
by skipping some of the local minimum points x̄ due to introduction
of momentum. Thus, the trajectories of this method might include
damped oscillations before stabilizing.
Continuous Dynamics: ẍ(t) + λẋ(t) + ∇f(x) = 0 , where ẋ(0) =
ẋ0, x(0) = x0, λ > 0 as friction parameter that control the number of
local minimas the heavy ball could reach asymptotically.

Figure 2: Graphical illustration of heavy ball with friction method [2]
Nesterov Acceleration(NAG)
Similar to the heavy ball with friction method, Nesterov purposed an
accelerated gradient method that could result in an O( 1

k2 ) for a con-
vex optimization problem. This algorithm includes an extrapolation
operation, followed by a gradient update step.

Ravine method(RAG)
By reversing the extrapolation and gradient step, the Ravine method
is closely related to Nesterov accelerated method. The interpretation
of this algorithm could be the flows of water in the mountains that

firstly pass by steep ravines rapidly and then followed by flowing to
the main branch in the valley by fig.3 [3].

The interpretation of this system could be as a mass-spring-damper
system with a curvature-dependent damping term, that directly
results in the acceleration and therefore superior performance of
NAG[3].

Figure 3: Geometrical demonstration of Ravine method(RAG) [3]
Continuous Dynamics: ẍ(t) + α

t ẋ(t) + ∇f(x) = 0, where
ẋ(0) = ẋ0, x(0) = x0, α > 0, t > 0

Summary

System Name Continuous Dynamical System

GF ẋ(t) = −∇f(x(t))
HBF ẍ(t) + λẋ(t) +∇f(x(t)) = 0
NAG ẍ(t) + α

t ẋ(t) +∇f(x(t)) = 0
RAG ẍ(t) + α

t ẋ(t) +∇f(x(t)) = 0

where α is a positive parameter, t > 0,
initial condition x(0) = x0

if system contain second order term ẋ(0) = z0

Table 1: Algorithms and their continuous dynamical systems

FUTURE WORK

The traditional gradient descent algorithm is not ideal for converging
to a local minimum even for a convex objective function, which also
not only requires a global Lipschitz condition to prevent the explosion
of gradient size everywhere in the domain but also the appropriate
choice of step size to prevent the possible slow convergence.

Adaptive Gradient Descent Without Descent Method
The algorithm in fig.4 was presented by Yura [1] in 2019, which re-
placed the global Lipschitz condition with a local Lipschitz condition
so that more functions such as tan(x) could be applied. Furthermore,
it chooses the step size automatically by ensuring the energy of the
system is decreasing for each iteration.

Work in progress
Due to the adaptive choice of step size and recursive relation between
step size for each iteration, the continuous dynamics of this system
are difficult to derive. It becomes an obstacle to understand why local
Lipschitz is sufficient and find its mechanical interpretations without

knowing the exact continuous dynamical system.
Apart from that, certain discretization methods that yield from a con-
tinuous dynamic of adaptive gradient descent method with similar
convergence properties would also be the research goal in the future.

Figure 4: Adaptive Gradient Descent Algorithm [1]
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