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Introduction

The physical properties exhibited by a quantum system often depend on external parameters
which can be varied. Different configurations of these parameters in which different properties
are exhibited by the system are said to be different physical phases. These phases can some-
times be distinguished by an associated topological invariant: an integer number which takes
distinct values when the system is in distinct phases, and is invariant under adiabatic defor-
mations. We begin this poster by investigating the geometric Berry phase associated with
adiabatic deformations of a parameterised Hamiltonian. Then we analyse the SSH model
- a simple 1-Dimensional quantum wire which acts as a topological msulator - and seek to
compute a topological invariant for it, related to the Berry phase.

The Berry Phase

Consider a quantum system, with a Hamiltonian H (R) dependant on various parameters
R = (X4, Xy, ...), and suppose that these parameters are varied “slowly” around a circuit
(' in the Hamiltonian’s parameter-space. This defines an adiabatic process, so the adiabatic
theorem guarantees that the system will return to its initial state with the addition of a phase
factor (There is a fundamental U(1) gauge freedom over the choice of phase for quantum
states, as the phase of a state has no bearing on the expectation values of its observable
properties). On top of the dynamical phase factor that accompanies the time evolution of
any state, there is also a geometric phase factor - the first explicit formula for which was
derived in 1984 [1] - which is a geometric property of the circuit traversed in parameter space
and has no dependence on the rate of traversal. This is called the Berry phase, which for a
Hamiltonian with eigenstates |n(t)) has the form:

3(C) = [V x Bu(R) ¢ dR where B,(R) = i (n(R)|Vn(R))

B,(R) is the Berry Connection, which acts as a vector potential for the quantity that
is integrated to compute the Berry phase (analogous to the magnetic vector potential in
electromagnetism).

A U(1) gauge transformation is a transformation of the states by a phase factor:
In) — exp{iu(R)} |n) and thus B,(R) — B,(R)+:Vu(R)

Since the curl of a gradient is zero, one sees that the Berry phase itself is invariant under such
a transformation, and is therefore U(1) gauge invariant.
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The SSH Model

Fig. 1. Above: A stylised model of a polyacetylene molecule |2]. Below: A diagram of the edges of
the SSH model.

The Su-Schrieffer—-Heeger (SSH) model is a 1-dimensional model of a
polyacetylene molecule, consisting of a 1D lattice of 2N sites (atoms)
each of which can be occupied by a single spinless fermion. Due to the
alternating identical bonds in the polyacetylene molecule, the lattice
can be decomposed into N unit cells of two sites each «; and 3;. The
parameters t, and tg are the hopping amplitudes, which are related
to the probabilities of an electron hopping between adjacent sites on
the lattice, and p, and pg are the chemical potentials of the av and (3
sites. The second quantisation Hamiltonian for this system is:
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Where «;, 8; and 04;[ , ﬁj are fermionic annihilation and creation
operators, and therefore must obey the canonical anti-commutation
relations required of such operators by the Pauli exclusion principle.
For example (as pictured in Fig. 1), the operator 0452 annihilates a
fermion at the 2nd cell’s B site and then creates one at its « site when
acting on a state in which such a "hop” is quantum mechanically
permitted. This models the intracell hopping of an electron along a
bond between sites in the second cell.

We can impose periodic (or twisted periodic) boundary condi-
tions by linking the ends of the lattice together (with the addition of
a phase factor in the twisted case) forming a ring, so that ay.; = ay.
This Hamiltonian can be Fourier transformed and thus expressed in
terms of the momentum space operators A, and B;. for the a and
sublattices. This can be diagonalised, yielding the spectrum for the
Hamiltonian:
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We can now plot the band structure of the SSH model for various val-

ues of the hopping amplitudes, to investigate its electronic properties.
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Fig. 2: Plots of the band structure of the SSH model’s Hamiltonian for various values of the hopping amplitudes.
Left: t, =1, t5 =05 Middle: t, =1, t3 =1 Right: {, =0.2, t3 =1

There are 3 possible configurations of the hopping amplitudes that result in the SSH model
exhibiting different physical properties at halt-filling. The system is in the gapless phase
boundary when ¢, = t3. In this phase it behaves like a metal, since there 1s no band gap
and hence eigenstates of arbitrarily small energy increments above the halt-filled groundstate
are free to be occupied and to carry fermions along the lattice. All other configurations behave
as insulators, due to the non-zero band gap.
The system 1s in the trivial phase when ¢, > 3, and the intracell hopping of fermions
dominates the intercell hopping (as pictured in the top figure below). There are no zero-
energy elgenstates at the edges in the trivial case.
The system 1s 1n the topological phase when ¢, < 73, and the intercell hopping dominates.
This results in there being an “isolated” site at both edges, for which a single zero energy
eigenstate exists (see the bottom figure below).
§ ) " These are distinct physical phases of the system,
and you can not adiabatically deform a Hamil-
" tonian corresponding to one phase into one cor-
T responding to the other, since doing so would
/ /. close the band-gap at the phase boundary where

ty = tg.

The Topological Invariant

Now consider the bulk Hamiltonian not as a whole, but parameterised by momenta and
expressed in the basis of Pauli spin matrices (where p := o = p3):

) o+ tgcos(k)
H(k) =dyoyg+d(k) e o where d(k) = | tgsin(k)
0

The vector d(k) traces out a circle of radius ¢4 in the x-y plane of R® as momentum runs
through the first Brillouin zone: k = 0 — 27 (See Fig. 3).

A topological invariant for the SSH model is the winding number v of this closed curve
around the origin. This can be calculated graphically by counting the intersections of the
curve with an arbitrary “line of sight” from the origin to infinity, or it can be computed using
the formula:

and dy =

_ d(k)

d(k)]
In the trivial phase v = 0, on the phase boundary v is undefined and in the topological phase
v = 1. Explicit computation of the Berry phase associated with adiabatically transporting
this parameterised Hamiltonian through the first Brillouin zone yields v = var. |4]

v - % [ x d%&(k))zdk where d(k)
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