Background settings of 3-player betting games

This project is motivated by Professor Persi Diaconis' paper[3]. The focus of this study is on the hiting probabilities in 3 -player betting games. The rules of the games can be round is denoted as $\left(X_{n}, Y_{n}, Z_{n}\right) \in \mathbb{N}_{0}^{3}$, and set $\left(X_{0}, Y_{0}, Z_{0}\right)=(x, y, z)$. We assign player1 with X_{n} and as the protagonist when comes to winning or losing. The betting rule is $\$ 1$ bet. Other variation of betting rules such as all-in bets are not discussed in this paper. The all-in betting rule is discussed in the unpublished paper: Angel.
Winning in this game means $X_{n}=x+y+z$, for some $n \in \mathbb{N}$. For both games, once 1 player is eliminated, then it turns into 2 -player gambler's ruin problem. The games will continue until only 1 player remain
We investigate hitting probabilities under 2 different procedure settings, which will be consistently refered as

- Game1: 2 players

Game2: All 3 players infly chosen to play at each round.
Game2: All 3 players play at each round. If 2 players happen to be eliminated at
the same round, toss a fair coin to decide who is to be declared as being eliminated first.

Definition of Martingale

Definition. A filtration [2] is an increasing sequence of σ-fields, where n-th field denoted by \mathcal{F}_{n}. Now for the stochastic process $\left(X_{n}\right)_{n \geq 0}$, if $X_{n} \in \mathcal{F}_{n}$, then this process is
said to be adapted to $\left(\mathcal{F}_{n}\right)$. X_{n}, is a Martingale if the following is satisfied:

1. $\mathbb{E}\left(\left|X_{n}\right|\right)<\infty, n \geq 0$
2. $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}, n \geq 0$

If X_{n} denotes the fortune of player1 in a game at the n-th round, then notice the 2nd definition tells us player1's future fortune are expected to stay at player1's most recent forune. The \mathcal{F}_{n} contains information about fortunes of all players up to the n-th round. Martingale Property: If $\left(X_{n}\right)_{n \geq 0}$ is a Martingale, then $\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{0}\right), n \geq 0$. Proof. Since $\left(X_{n}\right)_{n \geq 2}$ is a Martingale, then $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}, n \geq 0$. Taking expectafesult $\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{0}\right), n \geq 0$.

Optional Stopping Theorem

Optional Stopping Theorem [2]: For the Martingale process $\left(X_{n}\right)_{\geq \geq 0}$. Let stopping lime be T. Then we have

$$
\mathbb{E}\left(X_{T}\right)=\mathbb{E}\left(X_{0}\right)
$$

If one of the following conditions hold:

1. The stopping time T is bounded.
2. $\mathbb{E}(T)<\infty$ and $\mathbb{E}\left(\left|X_{n+1}-X_{n}\right| \mid \mathcal{F}_{n}\right)$ is bounded
3. $\left|X_{n}\right|$ is bounded for all $n \geq 0$.

Acknowledgements
would like to thank my supervisor Professor Mark Holmes for his time throughout this summer, as the completion of this project would not be possible without his guidance.
It is my luck to work with you and I enjoy all the conversations we have had.

References

Omer Angel and Mark Holmes. "'All in!" poker sequences". In: (2022).

${ }^{2]}$ Konstantin Borovkov. Elements of stochastic modelling. World Scientific Publishing Company, 2014.

Martingale: Winning probability in

 3 -player gamesNow let's derive the winning probability of player1 in 3 -player fair betting game. We have $\left(X_{0}, Y_{0}, Z_{0}\right)=(x, y, z)$. For $\left(X_{n}\right)_{n \geq 0}$ over the staa $\operatorname{nf}\left\{n: X_{n} \in\{0, x+y+z\}, n \geq 0\right\}$. $W:=\left\{X_{T}=x+y+z\right\}$ Th distribution of X_{T} is:

$$
X_{T}= \begin{cases}0, & \text { w.p. } \mathbb{P}\left(W^{c}\right) \\ x+y+z, & \text { w.p. } \mathbb{P}(W)\end{cases}
$$

Notice in both games, once 1 of the players being eliminated, the dy namic of this process changes and becomes the same Martingale in the 2-player gambler's ruin problem. Also, in game2 we can have 2 play
ers being eliminated at the same round. So we define $\tau:=$ inf $\{n$ $\left.\left.\mathbb{1}_{\left\{X_{n}=0\right\}}+\mathbb{1}_{\left\{Y_{n}=0\right\}}+\mathbb{1}_{\left\{Y_{n}=0\right\}}\right) \in\{1,2\}, n \geq 0\right\}$ as the first time of the dynamic change. Also, whilst 3 players are all in this game, we need th sequence of $\left(X_{n}, Y_{n}\right)$ to determine if there has been an elimination. Recap on Game1: 2 players are uniformly chosen to play at each round Proof. We first prove $\left(X_{n}\right)_{n \geq 0}$ is a Martingale.

1. $\mathbb{E}\left(\left|X_{n}\right|\right)<\sup \{S\}=x+y+z<\infty$
2. | $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)$ |
| ---: | :--- |
| $=\mathbb{E}\left(X_{n}\right)$ |

$=\left[X_{n} \cdot \mathbb{1}_{\left\{X_{n} \in\{0, x+y+z\}\right\}}+X_{n} \cdot \mathbb{1}_{\left\{0<X_{n}<x+y+z\right\}}\right] \cdot \mathbb{1}_{\{\tau \leq n\}}+X_{n} \cdot \mathbb{1}_{\{\tau>n}$
$=X_{n}$

Recap on Game2: All 3 players play at each round. The proof logic is similar to the proof for game1.

For game1 and game2, both processes are Martingale. Also, this pro cess is an unbiased random walk on a finite state space, which mean eing Theorem: $\mathrm{E}\left(\left|X_{n+1}-X_{n}\right| \mid \mathcal{F}_{n}\right) \leq 2$. Therefore, by Optional Stop
In

$$
\mathbb{E}\left(X_{T}\right)=\mathbb{E}\left(X_{0}\right) \Longrightarrow 0 \cdot \mathbb{P}\left(W^{c}\right)+(x+y+z) \cdot \mathbb{P}(W)=x
$$

$$
\Longrightarrow \mathbb{P}(W)=\frac{x}{x+y+z}
$$

conclusion, the winning probability for player1 is $\frac{x}{x+y+z}$ in both 3 -playe etting games, which is just the ratio of initial fortune and total fortune.

Losing probability in 3 -player betting

game
Now we consider the losing probability in 3 -player betting games with elimination orders. Notice that player1 can be eliminated fist or se eliminated first, and we denote such event as L. Notice: We will refe the probability of event L as losing probabiity for convenience Instead of deriving the general analytical solution for it, our focus is o the behavi
of player1.

The motivation here originates from the Texas hold'em poker tou nament. Imaging the final table is left with last 3 players, and player calculate, so player1 wants to know if there are any ways to decreas the losing probability by manipulating fortunes under rules. For example, player1 decides to risk $\$ 1$ by intentionally losing to player2 who has low fortune, and hoping for that the increase in player2's fortune wi increase player3's loss rate more than player1's loss rate, and will no probability, as player2 is used to weaken player3 on purpose. Therefore we want to investigate if there is a chance to benefit from this kind of betting strategy, though our intuition clearly says more fortune mean lower losing probability.

Monotonic decreasing proof for losing probability

Proposition. Let $f(x):=P_{(x, y, z)}$, where $y, z \in \mathbb{N}$ are fixed. We claim $\mathbb{N} \rightarrow \mathbb{R}$ is monotone decreasing.
Game1:
Proof. We want to show $f(x+1)<f(x)$ for monotone decreasing Let $\eta\left(U_{i}\right)$ be the outcome function for each round.

We construct 2 processes of game1 based on the same set of $\eta\left(U_{i}\right)$ $\left(X_{n}, Y_{n}, Z_{n}\right)_{n \geq 0}$ and $\left(X_{n}, Y_{n}, Z_{n}\right)_{n \geq 0}$. We denote $\left.T\right):=\inf \left\{n: X_{n}^{\left.()^{\prime}\right)}\right.$ $\{0, x+y+z\}, n \geq 0\}$. Under such construction, the two processe

$$
\begin{align*}
& \left(X_{n}, Y_{n}, Z_{n}\right)=(x, y, z)+\sum_{i=1}^{n \wedge T} \eta\left(U_{i}\right) \tag{1}\\
& \left(X_{n}^{\prime}, Y_{n}, Z_{n}\right)=(x+1, y, z)+\sum_{i=1}^{n \wedge T^{\prime}} \eta\left(U_{i}\right)
\end{align*}
$$

Notice we use the same set of $\left\{U_{i}, i>1\right\}$ to construct 2 processes which means we force 2 trajectories to share the same movemen from the beginning. Now if $\left(X_{n}, Y_{n}, Z_{n}\right)_{1}=X_{n}$ reaches 0 first among (i.e. $n=T^{\prime}$). Then this event $A^{\prime}=\left\{X_{T^{\prime}}^{\prime}=0, Y_{i} \neq 0, Z_{i} \neq 0, \forall i \leq\right.$ $\left.T^{\prime} \mid T^{\prime} \in \mathbb{N}\right\}$ implies:

$$
x+1+\left[\sum_{i=1}^{T^{\prime}} \eta\left(U_{i}\right)\right]_{1}=0 \Longrightarrow\left[\sum_{i=1}^{T^{\prime}} \eta\left(U_{i}\right)\right]_{1}=-(x+1)
$$

Therefore, there exists:
$T_{\text {set }}=\left\{t_{j}<T^{\prime}:\left[\sum_{i=1}^{t_{j}} \eta\left(U_{i}\right)\right]_{1}=-x, j \in \mathbb{N}\right\} \Longrightarrow \inf \left\{T_{\text {set }}\right\}=T$
This means a set of all t_{j} such that $X_{t_{j}}=0$. Taking the infil mum then simply yields our stopping time T for the first process, Let us denote this loss event of player1 in the first process as = $X_{T}=0, Y_{i} \neq 0, Z_{i} \neq 0, \forall i \leq T \mid T \in \mathbb{N}$.

Now since $T_{s t t}$ is bounded above by T^{\prime}, we have $\inf \left\{T_{s e t}\right\}=T$ $T=n$. This proves if player1 is eliminated first in the second process $\left(X_{n} Y_{n}, Z_{n} n \geq 0\right.$ at n-th round, then it implies playert will be
eliminated in the first process $\left(X_{n}, Y_{n}, Z_{n}\right) \geq$ before n-th round for sure.

So we have: $A \subset A$. Therefore:
$f(x+1)=P\left(A^{\prime}\right)<P(A)=f(x$
Hence, we prove the losing probability of player1 is monotone de creasing in game

Game2: The proof follows in a similar way as in the proof of game is just a matter of changing the $\eta\left(U_{i}\right)$ according to game2's distribution.
n conclusion, the sacrificing betting strategy does not yield benefi for our player. However, in a paper[1] worked by Professor Mark
Holmes and Professor Omer Angel, it has already been proved tha with all-in betting rule, such betting strategy does yield benefit for our player.

Example of explicit calculation of losing probability of game1 for small state space

Consider the total fortune of our game is $\$ N \in \mathbb{N}$ Then the 3 -player gambler's ruin problem of game can be seen as a random walk over the state space $S_{N}:$ will $\left\{X_{n}, Y_{n}, Z_{n} \in \mathbb{N}_{0}\right.$: $X_{n}+Y_{n}+Z_{n}=N$
We will be looking at S_{4}, since losing probability over S_{3} is is jus uniform.

Again, let $P_{(x, y, z)}$ be the losing probability of player1, given
$\left(X_{0}, Y_{0}, Z_{0}\right)=(x, y, z)$. Here, we we will be explicitly com $\left(X_{0}, Y_{0}, Z_{0}\right)=(x, y, z)$. Here, we we will be explicitly com
puting P_{0} over S_{4} Now over $S_{\text {, }}, x \in\{1,2$ so we will b puting $x_{x, y z}$ over S_{4}. Now over $S_{4}, x \in\{1,2\}$, so we will be
interesting in $P_{i}, \forall i \in I:=\{(1,1,2),(1,2,1),(2,1,1)\}$.

Let $J:=\{(0,1,3),(0,3,1),(0,2,2)\}$, where J is the set J for some $n \geq 1 \mid X_{0}=i$, where $i \in S_{1}$

The dynamics of this game is simple from the diagram. The probability assigned on each arrow path is uniform.
Now back to $p_{i J}, i \in S_{4}$. We are only interested in the probability of reaching J, which is the boundary at the bottom
and we are not interested in who is the final winner of the and we are not interested in who is the final winner of the game. Therefore, we assume the states in J to be absorbing notice that those no comeback states yield 0 probability for

We first calculate $P_{(1,1,2)}$:

$$
P_{(1,1,2)}=p_{(1,1,2) J}
$$

Also, we know by symmetric:

$$
P_{(1,1,2)}=P_{(1,2,1) J}=p_{(1,1,2) J}=p_{(1,2,1) J}
$$

$p_{(1,1,2) J}=\frac{1}{6}\left(p_{(0,1,3) J}+p_{(1,0,3) J}+p_{(2,0,2) J}\right.$ $\left.p_{(2,1,1) J}+p_{(1,2,1) J}+p_{(0,2,2) J}\right)$ $=\frac{1}{6}\left(2+p_{(2,1,1) J}+p_{(1,2,1, J)}\right)$
$p_{(2,1,1) J}=\frac{1}{6}\left(p_{(2,2,2) J}+p_{(3,0,1) J}+p_{(3,1,0) J}\right.$ $+p_{(2,2,0) J}+p_{(1,1,2) J}+p_{(1,2,1, J)}$ $\left.=\frac{1}{6}\left(p_{(1,1,2)}\right)+p_{(1,2,1) J}\right)$
From (3)(4)(5), we can solve $p_{(1,1,2) J J}=\frac{3}{7}$
So we have $P_{(1,1,2)}=P_{(1,2,1)}=\frac{3}{7}$. This then leaves $P_{(2,1,1)}=\frac{1}{7}$. Therefore, in game1, we can conclude that over S_{4}, the probability of player1 losin

