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Background settings of 3-player betting games

This project is motivated by Professor Persi Diaconis’ paper[3]. The focus of this study
is on the hitting probabilities in 3-player betting games. The rules of the games can be
seen as the 3-player gambler’s ruin problem. We set the fortune for each player at n-th
round is denoted as (Xn, Yn, Zn) ∈ N3

0, and set (X0, Y0, Z0) = (x, y, z). We assign
player1 with Xn and as the protagonist when comes to winning or losing.
The betting rule is $1 bet. Other variation of betting rules such as all-in bets are not
discussed in this paper. The all-in betting rule is discussed in the unpublished paper:
“All in! Poker sequences" [1] worked by Professor Mark Holmes and Professor Omer
Angel.
Winning in this game means Xn = x + y + z, for some n ∈ N. For both games, once 1
player is eliminated, then it turns into 2-player gambler’s ruin problem. The games will
continue until only 1 player remains.
We investigate hitting probabilities under 2 different procedure settings, which will be
consistently refered as:

• Game1: 2 players are uniformly chosen to play at each round.

• Game2: All 3 players play at each round. If 2 players happen to be eliminated at
the same round, toss a fair coin to decide who is to be declared as being eliminated
first.

Definition of Martingale

Definition. A filtration [2] is an increasing sequence of σ-fields, where n-th field de-
noted by Fn. Now for the stochastic process (Xn)n≥0, if Xn ∈ Fn, then this process is
said to be adapted to (Fn)n≥0. (Xn)n≥0 is a Martingale if the following is satisfied:

1. E(|Xn|) < ∞, n ≥ 0

2. E(Xn+1 | Fn) = Xn, n ≥ 0

If Xn denotes the fortune of player1 in a game at the n-th round, then notice the 2nd
definition tells us player1’s future fortune are expected to stay at player1’s most recent
fortune. The Fn contains information about fortunes of all players up to the n-th round.

Martingale Property: If (Xn)n≥0 is a Martingale, then E(Xn) = E(X0), n ≥ 0.

Proof. Since (Xn)n≥0 is a Martingale, then E(Xn+1 | Fn) = Xn, n ≥ 0. Taking expecta-
tion on both side yields E(Xn+1) = E(Xn) for n ≥ 0. Then by induction we have the
result E(Xn) = E(X0), n ≥ 0.

Optional Stopping Theorem

Optional Stopping Theorem [2]: For the Martingale process (Xn)n≥0. Let stopping
time be T . Then we have:

E(XT ) = E(X0)

If one of the following conditions hold:

1. The stopping time T is bounded.

2. E(T ) < ∞ and E(|Xn+1 −Xn| | Fn) is bounded.

3. |Xn| is bounded for all n ≥ 0.
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Martingale: Winning probability in
3-player games

Now let’s derive the winning probability of player1 in 3-player fair betting
game. We have (X0, Y0, Z0) = (x, y, z). For (Xn)n≥0 over the state
space S = {0, 1, ..., x + y + z}. The stopping time is denoted as T :=
inf{n : Xn ∈ {0, x + y + z}, n ≥ 0}. W := {XT = x + y + z} The
distribution of XT is:

XT =

{
0, w.p. P(W c)

x + y + z, w.p. P(W )

Notice in both games, once 1 of the players being eliminated, the dy-
namic of this process changes and becomes the same Martingale in the
2-player gambler’s ruin problem. Also, in game2 we can have 2 play-
ers being eliminated at the same round. So we define τ := inf{n :
(1{Xn=0} + 1{Yn=0} + 1{Yn=0}) ∈ {1, 2}, n ≥ 0} as the first time of the
dynamic change. Also, whilst 3 players are all in this game, we need the
sequence of (Xn, Yn) to determine if there has been an elimination.
Recap on Game1: 2 players are uniformly chosen to play at each round.

Proof. We first prove (Xn)n≥0 is a Martingale.

1. E(|Xn|) < sup{S} = x + y + z < ∞

2. E(Xn+1 | Fn)
= E(Xn+1 | (X0, Y0), . . . , (Xn, Yn))1{τ≤n}
+E(Xn+1 | (X0, Y0), . . . , (Xn, Yn))1{τ>n}
=
[
Xn · 1{Xn∈{0, x+y+z}} + (12(Xn + 1) + 1

2(Xn − 1)) · 1{0<Xn<x+y+z}
]
1{τ≤n}

+
[
1
3(Xn + 1) + 1

3(Xn − 1) + 1
3(Xn)

]
· 1{τ>n}

=
[
Xn · 1{Xn∈{0, x+y+z}} +Xn · 1{0<Xn<x+y+z}

]
· 1{τ≤n} +Xn · 1{τ>n}

= Xn

Recap on Game2: All 3 players play at each round. The proof logic is
similar to the proof for game1.

For game1 and game2, both processes are Martingale. Also, this pro-
cess is an unbiased random walk on a finite state space, which means
E(T ) < ∞ and E(|Xn+1 −Xn| | Fn) ≤ 2. Therefore, by Optional Stop-
ping Theorem:

E(XT ) = E(X0) =⇒ 0 · P(W c) + (x + y + z) · P(W ) = x

=⇒ P(W ) = x
x+y+z

In conclusion, the winning probability for player1 is x
x+y+z in both 3-player

betting games, which is just the ratio of initial fortune and total fortune.

Losing probability in 3-player betting
game

Now we consider the losing probability in 3-player betting games with
elimination orders. Notice that player1 can be eliminated first or sec-
ond. In specific we are only interested in the event of player1 being
eliminated first, and we denote such event as L. Notice: We will refer
the probability of event L as losing probability for convenience.
Instead of deriving the general analytical solution for it, our focus is on
the behaviour of its probability function, parameterised by initial fortune
of player1.

The motivation here originates from the Texas hold’em poker tour-
nament. Imaging the final table is left with last 3 players, and player1
wants to analyse the probability. The exact probability is to hard to
calculate, so player1 wants to know if there are any ways to decrease
the losing probability by manipulating fortunes under rules. For example,
player1 decides to risk $1 by intentionally losing to player2 who has
low fortune, and hoping for that the increase in player2’s fortune will
increase player3’s loss rate more than player1’s loss rate, and will not
threat player1 too much. If it is true, then this decreases player1’s losing
probability, as player2 is used to weaken player3 on purpose. Therefore,
we want to investigate if there is a chance to benefit from this kind of
betting strategy, though our intuition clearly says more fortune means
lower losing probability.

Monotonic decreasing proof for losing
probability

Proposition. Let f (x) := P(x,y,z), where y, z ∈ N are fixed. We claim
f : N → R is monotone decreasing.

Game1:

Proof. We want to show f (x + 1) < f (x) for monotone decreasing.
We construct the outcome of each round via iid Ui ∼ U(0, 1), i ≥ 1.
Let η(Ui) be the outcome function for each round.

η(Ui) =



(1, −1, 0), Ui ≤ 1
3α

(1, 0, −1), 1
3α < Ui ≤ 2

3α

(0, −1, 1), 2
3α < Ui ≤ 2

3α + 1
6

(0, 1, −1), 2
3α + 1

6 < Ui ≤ 2
3α + 1

3

(−1, 1, 0), 2
3α + 1

3 < Ui ≤ 1
3α + 2

3

(−1, 0, 1), 1
3α + 2

3 < Ui ≤ 1

We construct 2 processes of game1 based on the same set of η(Ui),
(Xn, Yn, Zn)n≥0 and (X

′
n, Yn, Zn)n≥0. We denote T (′) := inf{n : X

(′)
n ∈

{0, x + y + z}, n ≥ 0}. Under such construction, the two processes
of players’ fortune at the n-th round given X0 = x and X

′
0 = x+1 are:

(Xn, Yn, Zn) = (x, y, z) +

n∧T∑
i=1

η(Ui) (1)

(X
′
n, Yn, Zn) = (x + 1, y, z) +

n∧T ′∑
i=1

η(Ui) (2)

Notice we use the same set of {Ui, i > 1} to construct 2 processes,
which means we force 2 trajectories to share the same movement
from the beginning. Now if (X

′
n, Yn, Zn)1 = X

′
n reaches 0 first among

players at the n-th round
(i.e. n = T

′
). Then this event A

′
= {X ′

T
′ = 0, Yi ̸= 0, Zi ̸= 0, ∀i ≤

T
′ |T ′ ∈ N} implies:

x + 1 +

 T
′∑

i=1

η(Ui)


1

= 0 =⇒

 T
′∑

i=1

η(Ui)


1

= −(x + 1)

Therefore, there exists:

Tset = {tj < T
′
:

 tj∑
i=1

η(Ui)


1

= −x, j ∈ N} =⇒ inf{Tset} = T

This means a set of all tj such that Xtj = 0. Taking the infi-
mum then simply yields our stopping time T for the first process.
Let us denote this loss event of player1 in the first process as
A = {XT = 0, Yi ̸= 0, Zi ̸= 0, ∀i ≤ T |T ∈ N}.

Now since Tset is bounded above by T
′
, we have inf{Tset} = T <

T
′
= n. This proves if player1 is eliminated first in the second

process (X
′
n, Yn, Zn)n≥0 at n-th round, then it implies player1 will be

eliminated in the first process (Xn, Yn, Zn)n≥0 before n-th round for
sure.

So we have: A
′ ⊂ A. Therefore:

f (x + 1) = P (A
′
) < P (A) = f (x)

Hence, we prove the losing probability of player1 is monotone de-
creasing in game1.

Game2: The proof follows in a similar way as in the proof of game1.
It is just a matter of changing the η(Ui) according to game2’s distri-
bution.

In conclusion, the sacrificing betting strategy does not yield benefit
for our player. However, in a paper[1] worked by Professor Mark
Holmes and Professor Omer Angel, it has already been proved that
with all-in betting rule, such betting strategy does yield benefit for our
player.

Example of explicit calculation of
losing probability of game1 for

small state space

Consider the total fortune of our game is $N ∈ N.
Then the 3-player gambler’s ruin problem of game1
can be seen as a random walk over the state space
SN := {(Xn, Yn, Zn) ∈ N3

0 : Xn + Yn + Zn = N |n ≥ 0}[3].
We will be looking at S4, since losing probability over S3 is just
uniform.

Again, let P(x,y,z) be the losing probability of player1, given
(X0, Y0, Z0) = (x, y, z). Here, we we will be explicitly com-
puting Px,y,z over S4. Now over S4, x ∈ {1, 2}, so we will be
interesting in Pi, ∀i ∈ I := {(1, 1, 2), (1, 2, 1), (2, 1, 1)}.

Let J := {(0, 1, 3), (0, 3, 1), (0, 2, 2)}, where J is the set of
states that player1 loses first. We define piJ := P(Xn ∈
J for some n ≥ 1 |X0 = i), where i ∈ S4.

The dynamics of this game is simple from the diagram. The
probability assigned on each arrow path is uniform.

Now back to piJ , i ∈ S4. We are only interested in the
probability of reaching J , which is the boundary at the bottom
and we are not interested in who is the final winner of the
game. Therefore, we assume the states in J to be absorbing
which aligns with player1’s point view of being ruined. Also
notice that those no comeback states yield 0 probability for piJ .

We first calculate P(1,1,2):

P(1,1,2) = p(1,1,2)J

Also, we know by symmetric:

P(1,1,2) = P(1,2,1)J = p(1,1,2)J = p(1,2,1)J (3)

p(1,1,2)J =
1

6
(p(0,1,3)J + p(1,0,3)J + p(2,0,2)J

+ p(2,1,1)J + p(1,2,1)J + p(0,2,2)J)

=
1

6
(2 + p(2,1,1)J + p(1,2,1)J)

(4)

p(2,1,1)J =
1

6
(p(2,0,2)J + p(3,0,1)J + p(3,1,0)J

+ p(2,2,0)J + p(1,1,2)J + p(1,2,1)J)

=
1

6
(p(1,1,2)J + p(1,2,1)J)

(5)

From (3)(4)(5), we can solve p(1,1,2)J = 3
7.

So we have P(1,1,2) = P(1,2,1) = 3
7. This then leaves

P(2,1,1) = 1
7. Therefore, in game1, we can con-

clude that over S4, the probability of player1 losing
first given X0 = 1 is 3

7; and given X0 = 2 is 1
7.


