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Introduction
In category theory, there are two types of monoidal (tensor) categories: the ’strict’ and the ’relaxed’.
The difference between them is whether the ’strict’ equality sign is relaxed or not in different
’coherence conditions’. ’Associators’, the ones that satisfy one of the relaxed coherence conditions
(pentagon identity), play important roles in classifying the relaxed monoidal category. Therefore,
the main purpose of this poster is to study a way to classify associators in a rather special type
monoidal category, that is constructed from a finite abelian group G, with one ’non-invertible’
object N , which behaves ’strangely’ under the defined tensor product:
▶ g ⊗ h = gh
▶ N ⊗ g = N = g ⊗ N
▶ N ⊗ N =

⊕
g∈G\{N} g

Monoidal Category

A monoidal category is usually denoted as ⟨C, ⊗, E, 𝛼, 𝜆, 𝜌⟩[2], the following explains each
components:
A category [2] is just a directed graph with vertices being objects set (O) and directed edges being
the set of morphisms(A) between objects with composition rules between arrow and identity
function id : O → A,A ↦→ idA, where idA ∈ Hom(A,A), that then needs to satisfy two axioms:
Associativity of composition and existence of left and right identity morphism for a morphism.
A Tensor product [4] could be intuitively thought of as a defined process of ’fusion’ between two
mathematical objects.
Coherence Condition:
Associativity: ’strict’ tensor categories require (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), while ’relaxed’ ones
relax to require the two above equal up to a natural isomorphism, which we call an ’associator’:

𝛼A,B,C : (A ⊗ B) ⊗ C � A ⊗ (B ⊗ C)

the coherence condition that all associators need to satisfy is called the pentagon equation or
pentagon diagram:[2]

((A ⊗ B) ⊗ C) ⊗ D (A ⊗ (B ⊗ C)) ⊗ D A ⊗ ((B ⊗ C) ⊗ D)

(A ⊗ B) ⊗ (C ⊗ D) A ⊗ (B ⊗ (C ⊗ D))

𝛼A,B,C⊗idD

𝛼A⊗B,C,D

𝛼A,B⊗C,D

idA⊗𝛼B,C,D

𝛼A,B,C⊗D

Unit law: Any tensor category needs to have a ’tensor unit’, we define as E and satisfaction of this
axiom gives rise to two natural isomorphisms, left and right unitors 𝜆, 𝜌 :

𝜆A : E ⊗ A � A, 𝜌A : A ⊗ E � A

the coherence condition that each pair of unitors needs to satisfy collectively with any associator is
called the triangular diagram:

(A ⊗ E) ⊗ B A ⊗ (E ⊗ B)

A ⊗ B

𝜆A⊗idB

𝛼A,E,B

idA⊗𝜌B

VecG
VecG , the category with objects being G-graded vector spaces and morphisms being
grade-preserving linear maps, where G is a group. We denote each G-graded subspace as Sg = K,
and G-grade-preserving property of mapping allows Hom(Sg,SH ) = 𝛿g,hK, where 𝛿 is the
Kronecker delta function𝛿 .
As a result, by the pentagon equation in the last section and defining a projection isomorphism
mapping id ⊗ 𝜔 ↦→ 𝜔 and 𝜔 ⊗ id ↦→ 𝜔 , the pentagon equation is

𝜔 (g, h, kl) ◦ 𝜔 (gh, k, l) = 𝜔 (h, k, l) ◦ 𝜔 (g, hk, l) ◦ 𝜔 (g, h, k)

Moreover, if we have 𝜔1 and 𝜔2 both satisfy the pentagon equation, we can prove that their product
is commutative and also satisfies the pentagon equation
Moreover, the coherence condition resembles something called ’coboundary’ condition in group
cohomology, therefore, We now introduce the set of 3-cocycles, Z3(G,K×)[3], which is indeed the
set of all functions satisfy such condition, very much mimics the pentagon equation: Based on the
fact that K is a field and the commutative property of the product of associators, we can assert that
Z3(G,K×) is an Abelian group.
Next, we will focus on a subset of Z3 that is constructed from some arbitrary function
f : G × G → K×, such that 𝜔 : G × G × G → K×, 𝜔 (g, h, k) = f (h,k)f (g,hk)

f (gh,k)f (g,h) , the set of these 𝜔 ’s is the
same as subset B3(G,K×) of Z3, called the set of 3-coboundaries. As a subset of Abelian group Z3, it
is abelian and a normal subgroup of Z3, which implies the existence of quotient group Z3/B3
Equivalence Classes and Basis changes in Hom(Sg ⊗ Sh,Sgh)
it is not hard to discover that equivalence classes in quotient group Z3/B3 govern the relationship
between B (gh,k)

2 and B (g,hk)
2 if we dig deep into the subtly from S(gh)k and Sg(hk) And, we find out

that H 3(G,K) := Z3(G,K×)/B3(G,K×) called the third integral group cohomology of group G and
(K×,×) in group cohomology.
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Classification of Monoidal Category

Case I
We are looking at 𝜔 (g, h, l) ∈ Hom((g ⊗ h) ⊗ l, g ⊗ (h ⊗ l)) = K× with pentagon equation below:

𝜔 (h, k, l) ◦ 𝜔 (g, hk, l) ◦ 𝜔 (g, h, k) = 𝜔 (g, h, kl) ◦ 𝜔 (gh, k, l) (1)

Case II
The tensor product result is consistent if we have on N in triplet regardless of the position of N ,
and we define a new class of associators: 𝜙 ∈∈ Hom(N , )N ) = K× and more specifically, there are
three types of associators under this class:
▶ 𝜙 (1) (g, h) ∈ Hom((g ⊗ h) ⊗ N , g ⊗ (h ⊗ N))
▶ 𝜙 (2) (g, h) ∈ Hom((g ⊗ N) ⊗ h, g ⊗ (N ⊗ h))
▶ 𝜙 (3) (g, h) ∈ Hom((N ⊗ g) ⊗ h,N ⊗ (g ⊗ h))

Because the set of equations is highly symmetric, we will only display 2 diagrams

𝜙 (1) (g, h)𝜙 (1) (l, gh)𝜔 (l, g, h) = 𝜙 (1) (l, g)𝜙 (1) (lg, h) (2)

𝜙 (2) (g, h)𝜙 (2) (l, h) = 𝜙 (2) (lg, h) (3)

𝜙 (2) (l, h)𝜙 (2) (l, g) = 𝜙 (2) (l, gh) (4)

𝜔 (l, g, h)𝜙 (3) (lg, h)𝜙 (3) (l, g) = 𝜙 (3) (l, gh)𝜙 (3) (g, h) (5)

Case III:
Define𝜓 ∈ Hom(

⊕
g∈G\{N} g,

⊕
h∈G\{N} h) = K|G |, and one shoudl notice𝜓 ’s are diagonal matrices

▶ 𝜓 (1) (g, l) ∈ Hom((g ⊗ N) ⊗ N , g ⊗ (N ⊗ N))
▶ 𝜓 (2) (g, l) ∈ Hom((N ⊗ g) ⊗ N ,N ⊗ (g ⊗ N))
▶ 𝜓 (3) (g, l) ∈ Hom((N ⊗ N) ⊗ g,N ⊗ (N ⊗ g))

I will only display 2 diagrams[1]

𝜓 (1) (h, g−1l)𝜓 (1) (g, l)𝜙 (1) (g, h) = 𝜔 (g, h, h−1g−1l)𝜓 (1) (gh, l) (6)

𝜓 (2) (h, g−1l)𝜙 (2) (g, h) = 𝜓 (2) (h, l) (7)

𝜙 (1) (g, h)𝜓 (2) (gh, l)𝜙 (3) (g, h) = 𝜓 (2) (g, l)𝜓 (2) (h, l) (8)

𝜓 (3) (h, g−1l)𝜔 (g, g−1lh−1, h)𝜓 (1) (g, lh−1) = 𝜓 (1) (g, l)𝜓 (3) (h, l) (9)

𝜙 (2) (g, h)𝜓 (2) (g, lh−1) = 𝜓 (2) (g, l) (10)

𝜙 (3) (g, h)𝜓 (3) (h, l)𝜓 (3) (g, lh−1) = 𝜓 (3) (gh, l)𝜔 (lh−1g−1, g, h) (11)

Case IV: Due to various considerations, we define a new class of associators
𝛼 =

∑
h∈G\{N} 𝛽 (h, k) ∈ Hom((N ⊗ N) ⊗ N ,N ⊗ (N ⊗ N)) where h is in the source triplet and k is

the choice made in the target triplet, which is fixed. Then

𝜓 (3) (k−1g, g)𝜙 (3) (k, g)𝛽 (h, k−1g) = 𝛽 (h, k)𝜙 (2) (h, g) (12)

𝜓 (2) (g, k)𝛽 (hg, k)𝜓 (3) (g, hg) = 𝛽 (h, k)𝜙 (1) (h, g) (13)

𝜓 (1) (g, kg)𝛽 (h, kg)𝜓 (2) (g, h) = 𝜙 (3) (g, k)𝛽 (h, k) (14)

𝛽 (g−1h, k)𝜙 (1) (g, g−1h)𝜓 (1) (g, h) = 𝜙 (2) (g, k)𝛽 (h, k) (15)

Case V: This case has 4 N involved in the pentagon equation.

∑︁
h′

𝛽 (h′, k)𝜓 (2) (h′, l)𝛽 (h, h′) = 𝛿h−1l,k𝜓
(3) (h−1l, l)𝜓 (1) (h, l) (16)

By choosing suitable trivial basis changes, we can simplify the systems of equations, and solve to
get:
▶ 𝜔 = 1, 𝜙1 = 𝜓 3 = 1, 𝜙3 = 𝜓 1 = 1
▶ 𝜙2 = 𝜓 2 = (ℱ : G × G → K×)
▶ 𝛽 (e, e)2∑h′ 𝜙

(2) (h′, h−1lk−1) = 𝛿h−1l,k and 𝛽 (e, e)2∑h′ 𝜙
(2) (h′, e) = 1

⇒ 𝛽 (e, e)2 |G | = 1 ⇒ 𝛽 (h, k) = 𝛾

ℱ
, where 𝛾2 = |G |−1
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