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Introduction and definitions

A graph homomorphism G→H is a mapping h from the vertices of

G to the vertices of H such that if uv is an edge of G, h(u)h(v) is an

edge of H . When H is the complete graph Kt, homomorphisms to

H correspond to proper t-colourings of G.

Using homomorphisms, we can extend the definition of proper

colouring to directed graphs in a way that respects arc direction.

Recall an oriented graph G = (V, A) is a directed graph constructed

by orienting the edges of an underlying simple graph.

An oriented k-colouring ofG is defined as a homomorphism φ:
G→Tk where Tk is a tournament on k vertices. This definition

sets two conditions for a valid oriented colouring:

1. uv ∈ A(G) ⇒ φ(u) 6= φ(v)
2. uv, xy ∈ A(G), φ(u) = φ(y) ⇒ φ(v) 6= φ(x)
The first condition requires adjacent vertices receive different

colours. The second condition additionally requires that all

arcs from a given colour class to another must have the same

direction. The direction of an arc ij in Tk gives us the direction

of arcs between colours i and j.

Figure 1. Vertices connected by a 2-dipath require different colours, and

the directed 5-cycle requires five colours.

The oriented chromatic numberχo(G) of a simple (undirected) graph

G is the smallest k such that all possible orientations of G admit an

oriented k-colouring. If F is a family of graphs, χo(F) is the smallest

k such that all orientations of all graphs in F are k-colourable.

Let F be the family of orientations of connected cubic graphs.

A long-standing conjecture[3] asserts χo(F) = 7.

Recall the Cayley graph Γ = C(Gp, S) is constructed from a group

Gp, such that:

each element g of Gp is represented by a vertex g in Γ;
S is an inverse-closed subset of the elements of Gp (not

necessarily a generating set for Gp); and

there is an edge (g, gs) for every g ∈ V (Γ), s ∈ S.

In this project we show all orientations of cubic abelian Cayley

graphs with no source or sink vertex are 7-colourable. More-

over, every such orientation admits a homomorphism to the

Paley tournament on 7 vertices.

What are the cubic abelian Cayley graphs?

Recall Yn is the prism graph formed by the skeleton of an n-prism.

For even n, let Gn be the circulant graph C(Zn, {±1, n/2}).

Figure 2. Y4 (left) and G8 (right)

Theorem:

If Γ is a cubic Cayley graph on an abelian group, then there exists

t ∈ N such that every component of Γ is isomorphic to Yt or Gt.

As Γ is undirected, loopless and cubic, it follows that the group

identity e 6∈ S, order(Gp) is even and S has 3 distinct elements α,
β and δ. As S is inverse-closed with odd cardinality, at least one

element is self-inverse. Let β = β−1. Let t be the order of α in Gp.
We proceed in cases based on whether α is self-inverse.

Case 1: α = α−1

Then as S is inverse-closed, every element of S is self-inverse. As

Gp is abelian, multiplying an arbitary element u with any two ele-

ments of S induces the (undirected) 4-cycle, such as u,uα,uαβ,uβ.
Multiplying each of these elements with δ will yield another copy

of this 4-cycle, yielding a copy of Y4 as a component of Γ.

Case 2: α 6= α−1

Then S = {α, α−1, β} as S is inverse-closed. Through repeated mul-

tiplication starting with an arbitrary element u, α (together with

α−1) induces an undirected t-cycle: u,uα,uα2,...,uαt−1.

If β = αk for some k, the resulting component is as in Figure 3:
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Figure 3. Gt as a component of Γ, for t = 8, β = α4

Otherwise if β 6= αk for any k, the component is as in Figure 4:
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Figure 4. Yt as a component of Γ, for t = 4

As u is arbitrary, the components of Γ are pairwise isomor-

phic. Hence for some t ∈ N, Γ is either the disjoint union of

copies of Gt or the disjoint union of copies of Yt.

Relevant past results in oriented colouring

Oriented graph colouring has been well-studied:

All oriented connected cubic graphs can be coloured with 8

colours[1].

All orientations of ladder graphs (aka the grid Gd(2, n)) are
6-colourable for all n [2].

Figure 5. The ladder graph Gd(2, 6)

We observe that components of Γ can be regarded as ladder

graphs with the addition of two edges between the end vertices

of the ladder.

Figure 6. Y4 (left) and G8 (right)

Past oriented colouring results frequently utilise homomorphisms

to a Paley tournament QRq, constructed from a prime power q,
with vertices {0, 1, ..., q − 1} such that ij is an arc exactly when

j − i 6≡ 0 (mod q) is a non-zero quadratic residue.

Importantly, QRq is an arc-transitive graph, meaning we can

always fix a selected arc with a particular colouring.
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Figure 7. QR7

Results for cubic abelian Cayley graphs

χo ≥ 7.

Figure 8. Orientations of Y4 and G8 which requires seven colours

Not every orientation of a cubic abelian Cayley graph admits a

homomorphism to QR7. In all identified orientations where this

homomorphism does not exist, we note adjacent source (3

outgoing arcs) and sink (3 incoming arcs) vertices.

Tiling cubic abelian Cayley graphs

Let C be the family of orientations of cubic Cayley graphs on

abelian groups with no sources or sinks. We find a

homomorphism of Γ ∈ C to QR7 by tiling.

Figure 9. Tiling a random orientation of a component of Γ

The first two required tiles, which we call 3-tiles, are ladder

graphs on 8 vertices. In the green, the end arcs are oriented

differently, and in the blue, they are oriented the same.

Over all possible orientations there are 29 tiles. To ensure we

can combine these tiles, we colour them so the first and last

pairs of vertices use the same colours.

Figure 10. The 3-tiles with partially fixed colouring

By exhaustive search, all orientations of the blue 3-tile admit a

homomorphism to QR7, and all orientations of the green 3-tile

without a source or sink admit a homomorphism to QR7.

As QR7 is arc-transitive, utilising and reversing vertex

identification we can fix both end arcs with the same colours,

as required to tile in a partially-overlapping way.

Figure 11. Tiling our 7-colouring until four tiles remain.

We continue this tiling until we have 2, 3 or 4 remaining tiles

(equivalently 4, 6 or 8 vertices uncoloured).

Figure 12. Remaining uncoloured vertices.

These cases are equivalent to requiring valid 3-, 4- and

5-tiles. By exhaustive search, all source- and sink-free

orientations of 4- and 5-tiles admit a homomorphism to QR7
and we can complete the tiling.

Figure 13. Over all possible orientations, there are 215 5-tiles

Above in Figure 7 is a tiling of a Yn component. The same tiles

may be used to tile a Gn component.

As each tile admits a homomorphism to QR7, when we

compose the tiling we construct a homomorphism to

QR7. Doing this for each component constructs a ho-

momorphism from Γ to QR7.

Future directions for research

We propose two possible directions to extend this result to all

orientations of cubic abelian Cayley graphs.

Both 5-tiles always admit a homomorphism to QR7, regardless of

the presence of sources and sinks.

If this also holds for 6-, 7-, 8- and 9-tiles, the resulting tiling will

extend the 7-colouring result as desired.

However, this is very computationally intensive to check, with

the 9-tile requiring up to approximately 226 orientations to be

assessed for homomorphism.

We generated early evidence that orientations of the ladder graph

with one additional edge between end vertices are 6-colourable.

Figure 14. Equivalently, Γ minus an arbitrary edge uv

If this can be established rigorously, it may be possible to extend

6-colourings of orientations of these graphs to 7-colourings of ori-

entations of Γ.
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