Introduction and definitions

A graph homomorphism $G \rightarrow H$ is a mapping h from the vertices of G to the vertices of H such that if uv is an edge of $G, \mathrm{~h}(u) \mathrm{h}(\mathrm{v})$ is an edge of H. When H is the complete graph K_{t}, homomorphisms to H correspond to proper t-colourings of G.
Using homomorphisms, we can extend the definition of proper colouring to directed graphs in a way that respects arc direction.

Recall an oriented graph $G=(V, A)$ is a directed graph constructed by orienting the edges of an underlying simple graph.

An oriented k-colouring of G is defined as a homomorphism ϕ $G \rightarrow T_{k}$ where T_{k} is a tournament on k vertices. This definition sets two conditions for a valid oriented colouring:

1. $u v \in A(G) \Rightarrow \phi(u) \neq \phi(v)$
2. $u v, x y \in A(G), \phi(u)=\phi(y) \Rightarrow \phi(v) \neq \phi(x)$

The first condition requires adjacent vertices receive different colours. The second condition additionally requires that all arcs from a given colour class to another must have the same direction. The direction of an arc ij in T_{k} gives us the direction of arcs between colours i and j
$0 \rightarrow 0 \rightarrow 0$

the directed 5 -cycle requires five colours.

The oriented chromatic number $\chi_{o}(\mathrm{G})$ of a simple (undirected) graph G is the smallest k such that all possible orientations of G admit an oriented k-colouring. If \mathcal{F} is a family of graphs, $\chi_{o}(\mathcal{F})$ is the smallest k such that all orientations of all graphs in \mathcal{F} are k-colourable.

Let \mathcal{F} be the family of orientations of connected cubic graphs. A long-standing conjecture[3] asserts $\chi_{o}(\mathcal{F})=7$.

Recall the Cayley graph $\boldsymbol{\Gamma}=\boldsymbol{C}(\boldsymbol{G} \boldsymbol{p}, \boldsymbol{S})$ is constructed from a group $G p$, such that:

- each element g of $G p$ is represented by a vertex g in Γ;
- S is an inverse-closed subset of the elements of $G p$ (not necessarily a generating set for $G p$); and
- there is an edge $(g, g s)$ for every $g \in V(\Gamma), s \in S$

In this project we show all orientations of cubic abelian Cayley

 graphs with no source or sink vertex are 7-colourable. Moreover, every such orientation admits a homomorphism to the Paley tournament on 7 vertices.
What are the cubic abelian Cayley graphs?

Recall Y_{n} is the prism graph formed by the skeleton of an n-prism.

figure 2. Y_{4} (left) and G_{8} (right

Theorem:
If Γ is a cubic Cayley graph on an abelian group, then there exists $t \in \mathbb{N}$ such that every component of Γ is isomorphic to Y_{t} or G_{t}. As Γ is undirected, loopless and cubic, it follows that the group identity e $\notin S$, order $(G p)$ is even and S has 3 distinct elements α, β and δ. As S is inverse-closed with odd cardinality, at least one element is self-inverse. Let $\beta=\beta^{-1}$. Let t be the order of α in $G p$. We proceed in cases based on whether α is self-inverse.

Case 1: $\alpha=\alpha$
Then as S is inverse-closed, every element of S is self-inverse. As $G p$ is abelian, multiplying an arbitary element u with any two elements of S induces the (undirected) 4-cycle, such as $u, u \alpha, u \alpha \beta, u \beta$. Multiplying each of these elements with δ will yield another copy of this 4-cycle, yielding a copy of \boldsymbol{Y}_{4} as a component of Γ.

Case 2: $\alpha \neq \alpha^{-1}$

Then $S=\left\{\alpha, \alpha^{-1}, \beta\right\}$ as S is inverse-closed. Through repeated mul tiplication starting with an arbitrary element u, α (together with α^{-1}) induces an undirected t-cycle: $u, u \alpha, u \alpha^{2}, \ldots, u \alpha^{t-}$
If $\beta=\alpha^{k}$ for some k, the resulting component is as in Figure 3:

Otherwise if $\beta \neq \alpha^{k}$ for any k, the component is as in Figure 4:

Figure 4. Y_{t} as a component of Γ, for $t=4$

As u is arbitrary, the components of Γ are pairwise isomorphic. Hence for some $t \in \mathbb{N}, \Gamma$ is either the disjoint union of copies of G_{t} or the disjoint union of copies of Y_{t}

Relevant past results in oriented colouring

Oriented graph colouring has been well-studied:

All oriented connected cubic graphs can be coloured with 8 colours[1].

- All orientations of ladder graphs (aka the grid $G d(2, n)$) are 6-colourable for all n [2].

We observe that components of Γ can be regarded as ladder graphs with the addition of two edges between the end vertices of the ladder.

- Past oriented colouring results frequently utilise homomorphisms to a Paley tournament $Q R_{q}$, constructed from a prime power q, with vertices $\{0,1, \ldots, q-1\}$ such that $i j$ is an arc exactly when $j-i \not \equiv 0(\bmod q)$ is a non-zero quadratic residue. - Importantly, $Q R_{q}$ is an arc-transitive graph, meaning we can always fix a selected arc with a particular colouring.

Results for cubic abelian Cayley graphs

Figure 8. Orientations of Y_{4} and G_{8} which requires seven colours

- Not every orientation of a cubic abelian Cayley graph admits a homomorphism to $Q R_{7}$. In all identified orientations where this homomorphism does not exist, we note adjacent source (3 outgoing arcs) and sink (3 incoming arcs) vertices.

Tiling cubic abelian Cayley graphs

- Let \mathcal{C} be the family of orientations of cubic Cayley graphs on abelian groups with no sources or sinks. We find a homomorphism of $\Gamma \in \mathcal{C}$ to $Q R_{7}$ by tiling.

The first two required tiles, which we call 3-tiles, are ladder graphs on 8 vertices. In the green, the end arcs are oriented differently, and in the blue, they are oriented the same. Over all possible orientations there are 2^{9} tiles. To ensure we can combine these tiles, we colour them so the first and last pairs of vertices use the same colours.

คัํํㅇํ

- By exhaustive search, all orientations of the blue 3 -tile admit a homomorphism to $Q R_{7}$, and all orientations of the green 3 -tile without a source or sink admit a homomorphism to $Q R_{7}$
- As $Q R_{7}$ is arc-transitive, utilising and reversing vertex identification we can fix both end arcs with the same colours, as required to tile in a partially-overlapping way.

Figure 11. Tiling our 7 -colouring until four tiles remain

- We continue this tiling until we have 2,3 or 4 remaining tiles (equivalently 4,6 or 8 vertices uncoloured).

These cases are equivalent to requiring valid 3-, 4- and 5-tiles. By exhaustive search, all source- and sink-free orientations of 4- and 5-tiles admit a homomorphism to $Q R_{7}$ and we can complete the tiling

- Above in Figure 7 is a tiling of a Y_{n} component. The same tiles may be used to tile a G_{n} component.

As each tile admits a homomorphism to $Q R_{7}$, when we compose the tiling we construct a homomorphism to $Q R_{7}$. Doing this for each component constructs a homomorphism from Γ to $Q R_{7}$

Future directions for research

We propose two possible directions to extend this result to all orientations of cubic abelian Cayley graphs.

Both 5-tiles always admit a homomorphism to $Q R_{7}$, regardless of the presence of sources and sinks.

- If this also holds for 6-, 7-, 8- and 9-tiles, the resulting tiling will extend the 7 -colouring result as desired
- However, this is very computationally intensive to check, with the 9 -tile requiring up to approximately 2^{26} orientations to be assessed for homomorphism.

We generated early evidence that orientations of the ladder graph with one additional edge between end vertices are 6-colourable.

If this can be established rigorously, it may be possible to extend 6 -colourings of orientations of these graphs to 7-colourings of orientations of Γ.

Acknowledgements and references

Thank you to the School of Mathematics and Statistics for the op portunity to undertake this project; to my supervisor, Dr Christopher the other vacation scholars for the camaraderie throughout.

343(10):112021, 2020.
Guilaume Fertin, Andre Raspaud, and Arup Roychowahury. On the oriented chromatic

