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Introduction

The Ising Model arises from the field of Statistical Mechanics. It has been applied to study gene regulatory networks by representing genes as binary variables (on/off states)
and modeling the interactions between them. A spin glass model consists of N binary spins si, i = 1, 2, ..., N with si = ±1, These spins are coupled by a coupling matrix Jij
and are subject to an external magnetic field Hi, which is the bias term in our application. The energy of such configuration is given by the Hamiltonian:

H(~s) = −
∑
i,j

siJijsj −
∑
i

Hisi

The configuration probability is given by e−βH

Z where β > 0 is the inverse temperature and Z is the normalising constant.

Spin Glass Model Inference

Given sample of size N, ~sµ, µ = 1, 2, ..., N from a spin glass model with unknown
parameters, to compute the coupling matrix and the bias term, we use the
maximum likelihood approach:

L( ~J, ~H) =
∑
i,j

Jij
1

N

∑
µ

sµi s
µ
j +

∑
i

Hi
1

N

∑
µ

sµi − logZ( ~J, ~H)

=
∑
i,j

Jij〈σiσj〉D +
∑
i

Hi〈σi〉D − logZ( ~J, ~H)

Differentiated with respect to J and H we have:

∂L

∂Jij
= 〈σiσj〉D − 〈σiσj〉

∂L

∂Hi
= 〈σi〉D − 〈σi〉

The 〈σ〉D is the sample average and the 〈σ〉 is the expectation of the model
fitted. At the maximum of the log-likelihood these derivatives are zeros. Two
algorithms Gradient Descent and Proximal Gradient Descent are then applied
to search for the optimal parameters

Gradient Descent(GD)

The log-likelihood is a concave function, therefore, we use a gradient descent
approach. With learning rate λ, at each step, the coupling matrix and the bias
are updated according to:

J t+1
ij = J tij + λ

∂L

∂Jij
( ~Jn, ~Hn) H t+1

i = H t
i + λ

∂L

∂Hi
( ~Jn, ~Hn)

Given our focus on discerning positive and negative interactions among genes,
our model’s efficacy is assessed within a categorical spectrum.

The Area Under the Curve(AUC) of the Receiver Operating Characteris-
tic(ROC) is used to evaluate model performance, with values between 1 and
0.5, where a larger AUC indicates better performance.

Proximal Gradient Descent(PGD)

Proximal Gradient Descent with Lasso Regularization promote sparsity in the
inferred coupling matrix and improve model accuracy under the sparsity as-
sumption.

J t+1
ij = proxβ1h

(
J tij + λ

∂L

∂Jij
( ~Jn, ~Hn)

)
H t+1
i = proxβ2h

(
H t
i + λ

∂L

∂Hi
( ~Jn, ~Hn)

)
The proximal function is defined as

proxβh(u) =


u− β u > β
0 −β < u ≤ β
u+ β u < −β

PGD prevents the model from overfitting to the noise of the data and help
recover the true underlying coupling between spins.
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