Topic 2: COMPLEX NUMBERS

To compliment our knowledge of functions of real variables, we now
introduce basic properties and applications of complex numbers.

While originally a revolutionary concept, complex numbers are now
used extensively in physics and engineering, in areas such as elec-
tromagnetic waves and electric circuits, and together with calculus
form the mathematical study of complex analysis.

2.1 Introduction to Complex Numbers

2.2 Arithmetic of Complex Numbers

2.3 Modulus and Argument

2.4 Sketching Regions in the Complex Plane

2.5 Polar Form

2.6 The Complex Exponential

2.7 nth Roots of Complex Numbers

2.8 Roots of Polynomials and the Fundamental Theorem of Algebra
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2.1 Introduction to Complex Numbers

We know that many polynomial equations have real solutions, for
example:

z22-1=0
= =1
= z =41

However, there are also many polynomial equations which do not
have real solutions, for example:

224+1=0
= 2?=-1 (1)

Since no real number can be squared to give —1, this equation has
no real solutions for z.
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However, if we define an ‘imaginary number’, denoted by 4, such that
2 4
then the solutions to (1) become

z=+v—-1

=+1

So this imaginary number ¢ can allow us to solve equations that we
could previously not solve over the reals!

93

Examples:

o Using the imaginary number 2, write down an expression for /—25.

-5 = &l = 39

o Simplify i7.

.7 [ 5 e P
\ - ] \ i |

= (O-0)(1)y = =y

o For the complex number z = 2 — 34, write down:
Re(z) = &

(i) Im(z) = -3

(i) Re(z) —Im(z) =

2-(-3)=¢

95

Note:
tl) pot \3

—

Definition:

A complex number (generally denoted z) is defined as a quantity
consisting of a real number added to a multiple of the imaginary unit
i. Thatis:

z=zx+1iy
where z,y ¢ Rand i2 = —1.
z is called the real part of z and is denoted Re(z).
4@3 called the imaginary part of z and is denoted Im(z).
The set of all complex numbers is denoted C.

A complex number written in the form z = z 4 iy is said to be in
cartesian form.

Note that the reals R are a subset of the complex numbers C. Why?

ﬂﬂj N number st €R can be wnltn xtol e €

94

Argand Diagrams

Complex numbers can be represented graphically on an Argand di-
agram. We regard the complex number z = x4y as corresponding
to a point on the zy-plane, where the z-axis is now called the real
axis and corresponds to the real part of z, while the y-axis is the
imaginary axis and corresponds to the imaginary part of z.

An Argand diagram is also calied the complex piane.

Im
3 N
EERA
e QO 2 )
® 1
3 2 1 1 2 3 4 Re
| .
d-
. 2
'l'zt
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Example: Sketch the complex numbers 3 — i, —2 + 2¢, —4, and 3¢
on an Argand diagram.

\
™
& 3,
A ‘
o o+
i N 1 1
b&"_i' v A v A
—_ 4 "

31
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—— R

Complex addition, subtraction, and multiplication by a real number,
can be represented geometrically on an Argand diagram, and may
remind you of vector arithmetic.

Im Im

- zl+:2

Im

Re
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2.2 Arithmetic of Complex Numbers

Let zy = a4 ib and zp = ¢+ id be two complex numbers.

Equality: The complex numbers 21 and 25 are equal if and only if

Re(z1) = Re(z) and Im(z1) =Im(zo) .
) \E. o= ¢ andh L — d
Addition: We can add zy and z5 as follows:
21+ 20 = (a+ ib) 4+ (c + id)
=(a+c)+i(b+d)

Subtraction: We can subtract z; and z; as follows:
Z1 —Rp = (a+ 'Lb) — (C+’Ld)
=(a—c)+i(b—d)
Multiplication by £ € R: We can multiply z; by k& € R as follows:
kzy = k(a 4+ ib)
= (ka) + i(kb)

98

Multiplication of complex numbers

We can multiply two complex numbers by simply ‘expanding the
brackets’, remembering that i2 = —1.

z120 = (a + ib)(c + id)

= ac + taok £ b + =l
\ 1 A l
= ac¢ 4+ Jadik + ‘g(_ - gm

= (&\(_’l:di) < }(ao(-&l»c)

100
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The Complex Conjugate

Example: Find the solutions of 22 — 6z + 10 = 0. What is the
relationship between the solutions? Plot the solutions on an Argand

In order to divide complex numbers, we first need to define the com- diagram.
plex conjugate of a complex number. \g———————"'”
2 6 =36~ ()6
Definition: f z = a + ib is a complex number, then the complex 2( V)
conjugate of z is denoted z (“z bar”), and is defined to be
F=a—ib. = 64 J-¢ 1\\,\’\
—
That is, the real part stays the same and the imaginary part changes ks
sign. 34
‘ - 6= 5 A
o
Example: Write down the complex conjugate of: T N > Re
-3+ 7i (i) 2 — 5i (iii) 31 (iv) 4 — 64+ 2 T -
‘ -
—3-h 748 -5 “ b
— N \ 1779
101 = %% solichons . 103
(AM/?LM &OA\!V’L&‘!A"&I
N
Example: If 2y = 1 4+ i and 2o = -3 — 21, plot 21, 2z, Z1 and 2> Example: Let z and w be complex numbers. Prove the following
on an Argand diagram. What is the graphical relationship between z properties of the complex conjugate.
and 27 ™ (i) z+ Z isreal )
5 i\z[,; (i) z— Z is imaginary ,—9/4’ 2::&'(’\\9
> R .
. - ‘ (i) 2z isreal w = C*td
- z, = %4 V) zFw=2+%
s (v) z7u = zw
; E —— = (Lo
- T Ul 242 = (a4®) 4 (a-ib) = &«
J [ L , _ -
‘ T e T At () 2-T = (eW)- (a-b) = UL e sy,
2L reflocted aaris e
A () 32T = (asb)(a-1b)

Homework: Plot z; = 24, 20 = 3, Z7 and Z, on an Argand diagram.

102

= - ({E)L ‘) OC\‘?F of p)v/Zeo!r f7(¢w
= Q,L-r \\Lb\’ =

R
o{“.:( S & real 104
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W) Zew T (at®) + (i)

= (ate) £ ((b4ok)

= (at <)~ ] (b))

= (a—\b) + (c—1d)
= T AW

ety

= (agik) (c-t\w")
-

ac & lod + ‘\5C 4 ‘lbba&

v) LHS = Tw

105

Division of complex numbers

Suppose we want to divide two complex numbers:
a-+ ?b @
c+id
in order to get an answer in the form z 4 iy we need to make the
denominator real. To do so, we can make use of property (jii) of the
previous example, which says that a complex number multiplied by

its conjugate is real. So, we simply multiply top and bottom of (2) by
the complex conjugate of the denominator, ¢ — id.

a+ibxc——id_ (a+ ib)(c —id)
c+id c—id 2 — (id)?

_ (a4 ib)(c—1id)
=T 228

_(a+ib)(c—id) & mlh’,;(v ot
- c2 4 d?
Let’s try this on an example.

107

il

{ac —bok) + 3 (<ol b))

(ae —5A) = (acl e )

RS T 2w = (@a-s) (e-i)

= @c.—-bw&-—{kc "”k’“\.LLO('
- 4¢-—i¢\¢(\\|‘ac/ E;o(/
“;Cf\c“éw% -

= S

‘3(&10{ S Lg)

106

Example: Express the following in cartesian form z 4 iy.
1+2i ~\—3\
-1+ 3¢ > .
- ‘ —2) 1Y

— (H‘LI YG-3)
(-0 (%)
—(=% =4 -6,

e —

et

|

— "["S\‘Eg

i+ 4
o T v

108
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Example: Find Re (1 + 51) and Im (1 + 52)
2-24 2-23

2.3 Modulus and Argument

\ L g \ I O BN Considgr a complex number z represented in the complex plane (Ar-
" - . gand diagram).
-1 140
X The position of the complex number can be specified in two different
- (wsy) (ren) o o (L8 )- , ways:
~ = - - e by its real and imaginary parts = and y, such that z = = 4 iy.
R - o by its distance r from the origin, and the angle 6 around from the
: 0. 410" S positive real axis.
= 2LV A0 I (520 2 rm rm
8 - el
= 2« \1, —\o y r
4 = E Re 9 Re
- =&y
— )y ~ ; :
e 109 ERR]
Exercise: Let z = 1 — 5¢ and w = —2 - i. Express the following

complex numbers in cartesian form a -+ ib where a and b are real.

(i) w2z (i) — 1’22

Answers: (i) —17 — 194 (i) -3 — 24

110

So the distance r from the origin and the angle 0 give us an alterna-
tive way of specifying a complex number.

Definition: The modulus of z, denoted |z|, is the distance r of z
from the origin in the complex plane.

If z = z + iy we can find || by Pythagoras:

ol = a2+

Im
3 ré
;:,xi
W y
Re
x

12
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Definition: The argument of z, denoted arg(z), is the angle 6 that
z makes with the positive real axis in the complex plane.

Example: Find the modulus and argument of

i1+ +/3i (i) —3 — 34 (iiiy 3 + 44 (iv) —
To determine the argument of a complex number z = z + iy, draw . \ ] - \An
z in the complex plane and use standard triangles if possible to de- ¢ ) M Q) M
termine 8 = arg(z). )
Im 4 \ﬁ !
z 3 ? Lo
7 ¢ S
- [}
y 5 i 2 3 23
b Re 3 >
x \ t R—Q
_ — . —-3-%
If 4 is not a standard angle, we may note that =\ = \‘5 { '(-(Ji )
— A% r
tan(6) =< - S"—’\H = 2 2\ = \§(-z} € ()
~
if 9 is in the first or fourth quadrants we may then conclude § = = Ju = 3
arctan(¥) (recall that the range of arctan is (3, 5)). Crolx) = ‘[\’/
- 3T
113 3 3 NO (3 )= ¢ 115
@ RIS A
/ TI'
= >
_ -7 Re
Caution:
The argument of z is not unique, since adding multiples of 27 does
not change the position of z in the complex plane. lel = \(3 (e l= -+ o™
\f_’_ = 5 =7

However, there is only one value of the argument that satisfies —7 < 8 < .

This is called the principal argument of z and is sometimes denoted
Arg(z) with a capital A.

114

a(%), \ WJ(%)‘;-U_
=% 9 O=achn (%)

Homework: Find the modulus and argument of z = 2 — 2i.
Answer 2| = 2v2, arg(z) = —%

116
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Properties of the Modulus and Argument

In Section 2.5 we will prove the following properties of the modulus
and argument of complex numbers z and w.

Example: Using the properties of the argument, evaluate

@) arg (1 +1)(~1+30))

fovﬁ(wci) £ g (-1 4 J333)

it
1. |zw| = |z||w| J
= L + T “Aﬁ
o |2 = I « 3 !
Clwl 7wl
= 2L fT —+33,
3. arg(zw) = arg(z) + arg(w) L2 -
7| \JZ5
4. arg (£> = arg(z) — arg(w) = _’_‘_I . BTl \ N
w (e )
117 119
Example: Using the above properties of the modulus, evaluate {ii) arg (_2__:; 2i)
-2(3 - 1)(5+ 2i)

(1 +30)(7—1)
=  {-r\ 13- | Vg4
e\ 7=
- 2 3}/(-()‘ QT
\F%L JTay-
= 10
NER

et

118

Y

\l

)

%% 1%
- %
— L ?/‘,'L'
-7
¢ ¢ O N
Il
;4 1 y ?ﬁ;
_ 2B
30
C(
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2.4 Sketching Regions in the Complex Plane

By considering the set of complex numbers that satisfy certain con-
ditions, we obtain a corresponding region in the complex plane.

For example, {z : Re(z) = 3}, the set of all complex numbers
whose real part is 3, can be represented in the complex plane by the
vertical line intersecting the real axis at 3.

Im

| {z:Re=3}

Re

121

Example: Skeich the region in the complex plane given by

lz—i|=2.

First, we recognise that if z and zp are complex numbers, then
|z — zg| gives the distance between z and zg in the complex plane.

Im
Iz - zo!

2o

Re

So in our example we want all complex numbers z such that the
distance between z and i is 2.
123

Example: Sketch the set of points in the complex plane satisfying

Im(z) < 2.

122

This is represented by a circle centred at i, and of radius 2.

/\\’"‘
ot 5‘\

124
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Example cont'd: Now find the cartesian equation of this curve. Example: Sketch the region given by

) . I - 2<|2{|<4 and
We can find the cartesian equation (i.e. an equation in terms of =

i ™
a < arg(z) < 5"
and y), by substituting z = z + iy and simplifying.

N AN
|z —i| =2 '?§§B,/ !
]
= \xir{\j-‘(\ =T D\/ B

Y | x & mj,o\:z
= m: v (AWQL/ROA

=) 4 (3-()1:% of fhese

So we have obtained the equation of the circle in cartesian form.

? e

125

127

Example: Sketch the regiongivenby |z —3 —2i| < 3.
be— (320} &2
o bepets T adl 34l o

Example: Sketch the region givenby |z 42| = |z41|.

(2-(D\ = l2-())
\\%m " l % M '1

= At behve, 2 ael -

o

R

N T
~1

Homework: Find the cartesian equation of this region by substituting
z=z+iy. Homework: Find the cartesian equation of the above curve.
Answer: (z—3)2+ (y—2)2< 9 Answer: y = 22+ 3

126 128
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Example: Sketch the region given by
z=1z.

?L{Z:j = 3(7({%\7 )

=1 (x - )

- ‘g
VL vy
= 1oL +:]
Re -

Lpn -

>£=_‘j ~ . {
o dang
j;?b

Homework: Sketch the region given by zz = 16.
Answer: Circle of radius 4, centred at origin.

) Ut)L

129

Substituting these back into =z we obtain

z=uz+iy
= rCcosO +irsing

And so we obtain the polar form of a complex number:

z = r(cosf + isinf)

131

2.5 Polar Form

Recall that any complex number z = z 4 iy can also be specified
by its modulus r and argument 6.

Im
7 = X+iy

Ly

From the diagram above, we see that

x .
cosf = — and sing =
T

= Y r =7rcosf \ and

3l

'(yz'r;ne I

130

Example: Express the following complex numbers in polar form.

{rn

—

) pO('v )[O/m:

T T 2 (o’oS’% < ;5;4

W

6

%)

() z=+v3+i (i) 2= —1—3
Lm
REETY
{
—
\ i o
= J@per =J¥ =2
&= &=

lr/@

b3

—( -

c= Joey =

-9
2

5 () +19-(0))

132
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Multiplication in polar form

Consider two complex numbers written in polar form:

z1 = r1(cos@1 + isinédy) and 20 = ro(Ccos By + isinbs)

The product of these compiex numbers is

2129 = r1(C0s 81 + isinf1) - ro(cos by + isin )

= VK\Y\'),( (,059‘ wsOy + iw.c@‘ sBy

-+ ‘Sl\hs\ wsb. A i fl"‘-@( fl\z\ep)
AN

==\

[ € oosd, cos00 — 5n8, 1nB)

\ -

—+ \‘ ( “_»9‘1:% O+ f)‘A&,@SQ,,))

133

Example: Describe geometrically what happens when a complex
number z is multiplied by w = q.

—
—

\
v =t

\ (‘*OUT;/-% 17%527/)

-

= ((w59'+ U:\n&)

2wW= (LOS(GJ«E)J( i (0 ))
7 7 -

rockuling
‘H—“‘a! g ends
Some ME~ases €. rotate
s:) T anhelodwise
be, T
Jd ~

Homework: Describe geometrically what happens when a complex
number is multiplied by w = —i.
Answer: It is rotated clockwise about the origin through an angle of 3.

135

Recall the compound angle formulas for cos and sin:

cos(f; + 6;) = cos 8y cosfs —sindysinfy
sin(f1 + 6>) = sin 61 cos b, + cos Py sinbds

which shows that our expression for z1 25 simplifies to

z120 = T1T2(C05(91 + 62) +isin(6; + 92))
~ ) . .

Y oor U F T A O

Interpreting this geometrically shows that the product of two complex

numbers in polar form is obtained by multiplying their moduli (r12)

and adding their arguments (61 + 62):

Zizp| = [21]]|= —
|z122| = |z1ll22] (l".,.f“/‘_l/>

(9 :8\*&1/)

ard(z120) = arg(z1) 4 arg(zp)

We already made use of these properties in Section 6.3.

134

Division in polar form

Consider two complex numbers written in polar form:

z1 = ri(cosf; +isinfy) and 20 = ro(C0OS 65 + isin 67)

Provided z, 7 0, the quotient of these complex numbers is

CW}S@ —_ l\f\‘/\. 9\,)
o A
(0,8, - 946y

Vi)

<
IQJ:AB,COS & — Ln\’\ 9( SI\ASL)

z1 _ r1(cosfy +isinfy)
29 ro(cosfs +isingy)

- V\‘ ( 0059" "0591 ~ I.LO}G, rl\vlel £

T ( WJLe‘p'(’ )’)\/\J’S\,) <.
= Vv,
ﬁ (wAGt @by * 5B ﬁ\wgv) -~ ( ﬁ\,\,g\ wiPy — W,(Ql J;,L&.") )

136
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Recall the angle difference formulas for cos and sin:

cos(#y — 05) = cos 6y cosbp -+ sinby sinfy
sin(6; — ;) = sin 1 cosf, — coshy sinbo

which shows that our expression for % simplifies to

e T—l(COS(Gl —605) + isin(6, — 02))
z2 2

Interpreting this geometrically shows that the product of two complex
numbers in polar form is obtained by dividing their moduli (%) and
subtracting their arguments (6, — 62):

z1
22

_ =l
|22

arg (%) = arg(z1) — arg(z2)

137

2.6 The Complex Exponential

Recall that the polar form of a complex number z is
z =r(cosf + ising)

where r = |z| and 8 = arg(=z).

Definition: The complex exponential ¢ is defined to be

e = cos+ising

With this definition we can now write a complex number in exponen-
tial polar form

where r = |z| and 8 = arg(z).

139

Example: Describe geometrically what happens when a complex

number z is divided by w = 1 -+ 3.

27 (B¢ Wab) w T \(oozfg -GU.\A%)

X
%

Jcil {
{
5
):A/

\ o -%
= roabon  clockuate bJ T \ e

= ”T'(W(Q-fz)—ez;;«\(&v&; ) {
r 1 }

ocharsgd by T |

\

138

Example: Express z = —2 - 2+/3i in exponential polar form reid.
R -
~1%2 Al
.l _— Shandact Pragle
(A3 < M m\wﬁ b2

)
A
V
~

= Jeo ey 6=T-T - %
= Jegan
- g(, =) = Lte/

Homework: Express z = 1 — i in exponential polar form.
Answar z = v/2e %

140

Page 13 of 21




;31 . )
Example: Express z = 5¢*4 in cartesian form z + iy

Example: If z = +/3+4i and w = 1—+/3i, use exponential polar

formtofind 1 and zw.

2=z el WES P\ E
= S [w(E)+ 6a (Z}z)) |
I3t
\ ) //3 P
= §/-X i \
5 ( RN
5 \ﬁ L —ﬁl
. Js
= -5 .. - e
— /‘ x 1 /‘{ — [V T T
rE ) TG =
Jr 3> ) \ (= g7V (-R)y = L
- T
- =
T o= % 6= %

. i : . T
Homework: Express z = 4e™ '3 in cartesian form. ,1} '~
Answer: z = 2 — 2v/3i % - Z e €

141 143
\ \ S0 ~T
— - 3
Properties of the complex exponential - T - T E e e
T e 7r
T
From the definition of the complex exponential and the properties of »\(\T/ - Lf e “%
polar form that we have already shown, we obtain the following: = N e 6
T
1. e0=1
2. eioleiGQ = ei(€1+‘92)
eif1 . Q(fo/\lw "
3. & — if1—02)
eif2

Notice that these properties are consistent with the usual index laws
for working with exponentials {and so are easy to remember!).

Because of this, and because of its compact form, we generally

work with exponential polar form re® instead of standard polar form
r{cosf + isin ).

142
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De Moivre’s Theorem
Let z = re? = r(cos@ +ising).

De Moivre’s theorem states that for any integer n:

= ph ezn@

or

2" = r”(cos(ne) -+ sin(n()))

Note that again, in exponential form, this result is consistent with the
usual index laws

2= (,,,eié’)n — ,rn(eie)n — rneinG

145

De Moivre's theorem can be used to avoid expanding the brackets
when finding large powers of complex numbers.

Example: Use De Moivre’s theorem to find (1 + iv/3)8 in both
exponential and cartesian form.

(€3
. g
(\—E \\3‘3) J3
Ry
- (lQ - \
¢ T
=1 e r=t
NS
=27¢ 73 b =5

M

147

idea of proof:

8
z= e
8 8 : ©
P=z2= (€ e = fte\(s*g) - rletw
3 v LD . .
B =y 2= Ve)@w{ e - r’se‘(eua\ - 6‘29
B 3 38 (643 .
=z223= re V€ = ;/q_e/( 9): f"f (%9

By continuing the pattern we see the result for positive powers n.

Homework: See if you can deduce a similar pattern for negative
powers n, using the properties of the complex exponential.

146

\\
oo

_ 7 .
"‘2 -+ @'271

= —lw + 128 B0 — @l

148
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14
Exampile: Find (%) in exponential and cartesian form.
1

2.7 nth Roots of Complex Numbers

( -\
\ kL We have looked at how the complex exponential can be used to find
. integer powers of a complex number. Now we look at finding nth
O\ 2 roots.
= e >
__-——7,\—;
)
ﬁ' e “ Suppose we wish to find the nth roots of a complex number w. So
2z we want to find z such that
- (R )" e o
or SN=w
_ % - 4T s Using exponential polar form, let z = re* and w = set®. So:
@
S:" C { (reie)” = sei®
LT t = ,r.neine — seid)
&« ”’/“T; " \ r=J2
= € e i
149 o 1 & 151
- ( “{ —-‘ ‘G( N ‘W
- Jr e e i
- \r ¢ 6: © T"f;,
- T <
Equating the modulus and argument gives
— ¢ :«/v =3 and e = ¢i¢
- \F’/ € 1
= r = sn = n9=¢+2k‘ﬂ' kecZ
1
v 0 0=;(¢+2k1r) keZ

150

So we have solved for z = rei?, which gives the nth roots of w.
Thus, the nth roots of w = se'® are:

1 1
wn = gne

i (¢+2km)) fork=0,1,..,n— 1.

T
aet n Ailfeens

AM" rhip! 152
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Note 1
Notice that £k = 0, 1, ...,n — 1 gives n different nth roots of w. We
stop at n — 1 since if ¥ = n we would be adding a whole muitiple
of 2 o the argument, which gives the same complex number as
k=0.

Note 2

You do not need to memorise the formula in the box. Instead, it
is much easier o derive the nth roots of a complex number w by
starting with 2™ = w, expressing w in exponential polar form and
taking nith roots to solve for z.

The following examples will illustrate the method.

153

Sketch:

wE
e
)
1e
> e
-1
VE
e

We see that the cube roots of 8 all have modulus 2, and are evenly
spaced around a circle of radius 2 in the complex plane. This is a
general property - the nth roots of any complex number are evenly
spaced around the origin in the complex plane. Can you see why?

155

Example: Find the cube roots of 8, sketch them in the complex
plane, and express them in cartesian form.

Recall that over the reals, there is just one cube root of 8, namely
2. However, over the complex numbers we expect there to be three
~ cube roots of 8!

2= 8
i0
= CS}Q‘
B L (9 4LLT)
= §p
L
L A 3(0-@'1\[‘7) k=0, L
z= §3
10 e %
= e le ?) e ?
- (k'«L)
((*’90) Ub ‘) 154

Cartesian form:

/@0‘\7 e 1, "’(:‘:(ﬁ 156
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Example: Find the 6th roots of unity, and sketch these on the com-
plex plane. You may keep your answers in exponential polar form.

Note: ‘Unity’ is just a fancy way of saying 1!

Example: Find the 4th roots of 1 —/3i.

28 =\ — 8,

5,
6_ | = e
z = ‘0 ;(,fi -(*ZACW)
\ —_
= \_e - ZQ
(0AUT) N - )
— N + 24T
= | e T = « o L=0,%72
LA ™) T Lo
> g (-2 « = )
- © — y ' Vi T
-z \° e o T €
o 15 T - L TR
= . = « tr <
" ST s i P2 € 2 €
\0 6.‘6“;3 v e/g 7 e 3 e 2 ) )
= e & / ' S 2 (E 4T) om0
u l p“ﬂf»-\ 157 7/“@ ‘ ; 2“' /?’)159
I‘ —

158

Homework: Find the cube roots of 1 ¢
Answer: 21/663”/12, 21/661'31r/47 21/6ei177r/12

160

Y T 2% ¢ (T« )
=l ¢ y € y;
T T
N = BT T SR
T e 126
T T . S U
~t 4 P ¢ s
— ¢ z % [ “ .
e e ", e T
4 N
e ™
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2.8 Roots of polynomials

Having looked at nth roots of complex numbers, we now consider
solving more general polynomial equations in a complex variable z.

Finding the roots of a polynomial P(z) means solving P(z) = 0.
One way to do this is to factorise P(z) and set each of the factors
equal to 0.

Recall that over the reals R, some quadratics have roots because
they can be factorised into linear factors, like

2 +3z2+2=(@+2)(z+1),

while others have no real roots because they cannot be factorised,
such as

224+ 3z+4.

161

Example: Consider the polynomial P(z) = z3 — 3iz2 — 2z.
(i) How many roots do you expect this polynomial to have?

{ii} Factorise P(z).

(iii) Hence find the roots of P(z).

{iv) Verify your answers by substituting back into P and checking that
P(z)=0.

O expect 3 ool s cublc Ioolgz\o/»qwl
P(2)
o

W)

t)

(2% 32 -2)

N o\ e

3t E Jny= )
L(\)
= 3 & Jav«s
2

]
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Over the complex numbers C, however, we have the following beau-
tiful result.

The Fundamential Theorem of Algsbra
Every polynomial P(z) of degree n can be factorised into n linear
factors over C, that is

P(z)=a(z —a1){(z—a3)...(z—an)

where a, a1, 9,...,an € C.

This tells us that
every polynomial of degree n has exactly » roots over C!

Npansty repeakd)

If the coefficients of P(z) are real, then any non-real roots of P(z)
occur in complex conjugate pairs.

Anocther nice fact is the following:

162

= 3, \"'1—(-8 S 7 = 3= _ 304,
= — T =5
L U T
Tz 2 -
= o,
) = 2(z-2 ) (2-1)
Oi") oty of (P(z;) are O, 2 )
(Y) (o) O°¢ 3.0 — 2p=0D —
P(B) = ()= %2 - 2(2)
= giz el \’2/.‘3 - L& l‘ .\3: .(L"
(V) = }Z~ 3T -
- 1 € 3 =i =20 e 164

i
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¥k B ory  2h= \- % .
- Example: Solve 2%+ 22 -12=0. 5 B T 5
: S he= 2 e/‘ 3 ' — 2,2/ 3
(P owe @k ws 27 e ok o guadmbc ‘ - .
OX/ ﬁ . ‘(E}“'u‘—“) ‘('/};'Lkﬁ')
s \2 " Le k=2, =7 le=0,)
W W — =90
L 5 (Eeww) A VA (E ey
—_ = - =~ 2%
— (Wt w)(w-3)= o 2% 27 e >
(T kT (-8 v
5 we v we3 -5 et - fie
. ST
- 2 LIRS NS CHIN
. 2= 7 =dhe e e
. 2= U z =28
B - ST i
Pz % P 5
— 6 &
= (ool ae 2= 42, =R =’ 2 = &LG/ Jre ) Jiéz . Jre
/
165 167
Example: Solve z% — 222 4+ 4 = 0, expressing your answers in
exponential polar form.

(ot

At):m\c/\

wr— 2w+ Y = o

w= 2"

wWe 2E J O - 408
()
= Lt\MAe
-
- 24 J-1n 7 @4
2+ v
2 - _ \_%S:‘:
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Exercise: Express the above roots in cartesian form.

L4V3 41
Answer: :tﬁ + G
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$o

= ¢ R« Bl 6;;{;
= 3 3 3
Example: Solve P(z) =25 ~24+23—224+2-1=0. { < : = / & / € )
-~ A
HINT: Consider the product (z + 1)P(z) . ! ] |
? -—
@+ P>») = (=+)) (25— 3¢+ P 2262 1)
= %"~% —e/'?f'%-—//%f3 N - He ot of Pl) o Hese ooty exepr —|
, , -
Jc}/frﬁ‘u/z’f/?‘%f- 1 |
I ;z;«g a%;g ;S;;
So i F we  solu2 -1 =0
Wl are J‘olv?/\j

(a0 (¥ -27% Yo e a-1)= O
A

. ——~N—
z =~

169
§ ooty

Heo rpotr of

Homework: Express the above roots in cartesian form.
Answer: 1, +1 4 7,—‘/2—5
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—

e Ao ooty of

e R e

281

Rt oota of 26

CO Q)i(’gﬁb

r=-|
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