These notes are taken from the University of Melbourne course
620154 Calculus 1.

References refer to the subject textbook from 2008:

Anton, Bivens & Davis - Calculus: Early Transcendentals, 8th edi-
tion, Wiley, 2005.

Topic 1: Trigonometric Functions

In this topic we define the reciprocal trigonometric functions and in-
verse trigonometric functions, and derive several trigonometric iden-
tities.

1.1 Reciprocal trigonometric functions
1.2 Trigonometric formulae

1.3 Inverse trigonometric functions

1.1.1 The cosecant function

The reciprocal of the sine function is called the cosecant function. It
is abbreviated to “cosec” and is defined as:
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OommﬂAHv = Wa

provided sin(z) # 0.

Since sin(z) = 0 exactly when z = n= for some n € Z, the domain
of cosecis R\ {nm :n € Z}.

1.1 Reciprocal trigonometric functions [Appendix A]

You will all be familiar with the three trigonometric functions sine,
cosine and tangent and their graphs. Today we will define the recip-
rocals of these functions and sketch their graphs.

Graph of y = cosec(x)
We derive the graph of cosec(z) from the graph of sin(z).
We already know that the domain of cosec(z) is R\ {nw : n € Z}.

The range of sin is [—1, 1] and since we are taking the reciprocal,
the range of cosecis R\ (—1,1).

The function sin has turning points at AW +nr:ine Nv and there-
fore so does cosec.

The values of z for which cosec is not defined will be asymptotes.
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Homework: Sketch the graph of nOmmn V over the domain
[0, 27].

Example: Sketch the graph of cosec (2z) over the domain [0, 27]
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1.1.2 The secant function

The reciprocal of the cosine function is called the secant function. It
is abbreviated to "sec” and is defined as

sec(z) = .n.mumlpﬁw& provided cos(z) # 0.

Since cos(z) = 0O exactly when z =

W -+ nx for some n € Z, the
domain of cosecis R\ ﬁm +nr:ine NW.




Graph of y = sec(x)
We derive the graph of sec(z) from the graph of cos(z).
The domain of sec(z) is R \ m tnrine Nv .

The range of cos is [—1, 1] and since we are taking the reciprocal,
the range of secis R\ (—1, 1).

The function cos has turning points at {n= : n € Z} and therefore
so0 does sec.

The values of z for which sec is not defined will be asymptotes.

Example: Sketch the graph of 2 sec (z) over the domain [0, 27].
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Homework: Sketch the graph of — sec(z) over the domain [0, 2#].
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1.1.3 The cotangent function

The reciprocal of the tangent function is called the cofangent func-
tion. It is abbreviated {o “cot” and is defined as:

1 cos(x)

tan(z) ~ sin(z) provided sin(z) 7 0.

cot(z) =

Earlier we saw that sin(z) = O exactly when x = nx for some
n € Z so the domain of cot is R\ {n7 : n € Z}.
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tan(x) cot(x)
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We derive the graph of cot(z) from the graph of tan(z).
The domain of cot(z) is R\ {n7 : n € Z}.

The range of tan is R and since we are taking the reciprocal, the
range of cot is R.

The values of z for which tan is zero will be asymptotes for cot.
Similarly, since tan is the reciprocal of cot, the zeros of cot occur
where tan is undefined.

Example: Sketch the graph of cot Ae + Mv over the domain [0, 2x].
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Homework: Sketch the graph of 3 cot(z) over the domain [0, 2x].
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Harder example: Sketch the graph of 2 cosec Aa — MV + 1 over
the domain [—2x, 27].
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Summary

1
sin(z)

cosec(z) =

sec(z) =

1

cos(z)

Example: Evaluate the following:

(a) cosec(g) (b) sec(%)
(d) nOmmnAmwmv (e) mmnﬁwm.v
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Additional questions

You can now attempt a selection of exercises from 5-12, 15-16, 20-27
in Appendix A in the textbook.
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1.2 Trigonometric Formulae [Appendix A]

An identity is an expression written in terms of a variable, which is
true for all values of the variable in its implied domain. A familiar
example of a trigonometric identity is:

sin2(9) + cos2(f) = 1

This is called the Pythagorean identity. It is true for all values of
8 € R. We will now look at some other trigonometric formulae.

In particular, we will look at:

o Trigonometric identities

e Compound and Double Angle formulae
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1.2.1 Trigonometric identities

We start with the Pythagorean identity

sin2(0) + cos?(9) = 1. (1)

From this identity, we can derive identities involving reciprocal trigono-
metric functions. If we divide both sides of equation (1) by cos2(8),
we obtain:

sin2(6) 1

c0s2(0) +1= o32(0) provided cos(6) # 0

which is the same as

tan2(0) + 1 =sec?(g)  for cos(d) # 0
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Example: Simplify the expression sin?(z)(1 + cot?(z)).
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We can also divide equation (1) by sin?(@) to obtain:

cos?2(9) 1

1+ sin2(8) ~ sin2()

provided sin(8) = 0

which is the same as

1+ cot?(8) = cosec?(9)  for sin(8) # 0

These identities can be used to evaluate or to simplify trigonometric
expressions.
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Example: lfz € m, i. and sin(z) = ¢, find:

(a) cos(z) (b) cot(x).
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Example: ifz € Tmh, ML. and sec(z) = w find the exact values of:

(a) tan(z) (b) cosec(zx). I3 D
() Need hoky 1\9\:@ Jon ond  Pec.
‘*ﬂ}wx\T | = sedy T C
= (&Y
= *nx((ﬂ - WMA\ -\
- Mﬁ .
= oA = — V@ = 7 \W
fon  —ve a - Guadank ”

1.2.2 Compound angle formulae

Consider the right angled triangles pictured below.
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Let the length of AB be equal to 1, the angle DAC = z and the
angle BAC = y. Then AC = cos(y) and BC = sin(y). The
angle FCB is also equal to z, as shown.
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So, in triangle ADC we have:
orp

sin(z) = hup

_be
T AC

_ DC
" cos(y)

S0
DC = sin(z) cos(y) .

Similarly, by considering cos(z) in triangle ADC we find:
AD = cos(z) cos(y) .

And then, from triangle BCF,

BF = sin(z) sin(y)
CF = cos(z) sin(y)
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We would like to find expressions for sin and cos of the compound

angle z + y, as shown on the diagram below.
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cos(x+y)
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By replacing the angle y with —y, and recalling that
cos(—y) = cos(y) and sin{—~y) = —sin(y)
we can also deduce:
sin(z — y) =sin(z + (-y))

= sin(z) cos(—y) 4 cos(z) sin(—y)
= sin(z) cos(y) — cos(z) sin(y)

sin{z — y) = sin(z) cos(y) — cos(z) sin(y)

and
cos(z — y) = cos(x + (—y))
= cos(z) cos(—y) — sin(z) sin(~y)
= cos(z) cos(y) + sin(z) sin(y)

cos(z — y) = cos(z) cos(y) + sin(z) sin(y)
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From the diagram,
sin(z +y) = DF
=DC+CF
= sin(z) cos(y) + cos(z) sin(y).
Therefore

sin(z + y) = sin(z) cos(y) + cos(z) sin(y)

Similarly,
cos(z + y) = AE
= AD - DFE
= AD — BF (since BF = DE)
= cos(z) cos(y) — sin(z) sin(y).
Therefore

cos(z + y) = cos(z) cos(y) — sin(z) sin(y)

34

We can use these identities to deduce compound angle formulae for
the tangent function:
sin(z +y)

tante+9) = sty

__sin(z) cos(y) + cos(z) sin(y)
cos(zx) cos(y) — sin(z) sin(y)

Dividing the numerator and denominator by cos(z) cos(y), this ex-
pression simplifies to:

_ tan(a) + tan(y)
tan(z+4) = T n@ tan(e)
And similarly,
_ tan(z) —tan(y)
tan(z —y) = 1 4 tan(z) tan(y)
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Example: Simplity the expression cos (z + ).
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Example: Find the exact value of tan @wv
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Homework: Find the exact value of cos(33). = —2-53
Answer: ,mw.,\xw
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Example: Simplify the expression cosec (z — wv
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1.2.3 Double angle formulae

We now deduce the corresponding double angle formulae, for sin,
cos and tan of a double angle, 2z. These can be found by starting
with the compound angle formulae.

Recall for sin we have:

sin(z + y) = sin(z) cos(y) + cos(z) sin(y).
If we let y = z then we have:
sin(2z) = sin{z 4+ =)
= sin(z) cos(z) + cos(z) sin(x)
= 2sin(z) cos(z).

So the double angle formula for the sine function is:

sin(2z) = 2sin(z) cos(z)
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Similarly for cos we have:
cos(2z) = cos(z + z)
= cos(z) cos(z) — sin(z) sin(x)
= cos?(z) — sin?(z).
So:

cos(2z) = cos?(z) — sin?(z)

We can obtain two alternative versions of this formula by recalling
that sin2(z) 4 cos?(z) = 1, so:

cos(2z) = cos?(z) — sin?(z)
= (1 —sin?(z)) — sin’(z)
=1-2sin%(z)

=1—2(1 - cos?(z))
= 2cos?(z) — 1.
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1.2.4 Summary

Compound Angle Formulae

1. sin(z 4+ y) = sin(z) cos(y) 4 cos(z) sin(y)
2. sin(z — y) = sin(z) cos(y) — cos(z) sin{y)

3. cos(z + y) = cos(z) cos(y) — sin(z) sin(y)
4. cos(z — y) = cos(z) cos(y) + sin(z) sin(y)

tan(z) 4+ tan(y)
1 —tan(z) tan(y)
tan(z) — tan(y)
1+ tan(z) tan(y)

[$)]

. tan(z +y) =

(=]

. tan(z —y) =

43

And finally using the compound angle formula for tan(z + y) we
have:

tan(2z) = tan(z + z)

tan(z) + tan(zx)
T 1 —tan(z) tan(z)

2tan(z)
1 —tan?(z)’

So:

2tan(z)

.WNDAMHV = QM!N\MVI

tan Amv

Homeworl: Simplify the expression ——=~——.
plity P 1 —tan? Amv

Answer: $tan(z)
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Double Angle Formulasg

1. sin(2z) = 2sin(z) cos(z)

2. cos(2z) = cos?(z) — sin2(z)
1—2sin?(z)
2cos?(z) — 1

2tan(z)

3. ﬁNDANHv = %a
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Additional questions

You can now attempt a selection of exercises from Appendix A exer-
cises 45-58 in the textbook.

45

Clearly, the functions sin, cos and tan are not one-to-one because
they are periodic. However we can restrict the domains of these
functions to obtain one-to-one functions. For these restricted func-
tions we can then define inverse functions.

1.3.1 The sine and inverse sine functions
We are going to define an inverse for the sine function.
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Figure 1. Graph of the sine function on [—2, 2x]

To do so, we need to restrict the domain of the sine function so
that the new function is one-to-one on this restricted domain, but
the range of the function is not restricted.
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1.3 Inverse trigonometric functions [Chapter 1.5]

Recall that a function f is one-to-one if for each element y in the
codomain of f there is at most one z in the domain of f such that
f(z) = y. An easy way to see if a function is one-to-one or not, is
_to draw a horizontal line through the graph of f.

The function is one-to-one if there is no horizontal line which cuts the
graph in more than one place. Here the graph on the left is one-to-
one, but the graph on the right is not.
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Clearly many choices are possible. To avoid confusion, if is widely

accepted that the restricted domain should be Twu &
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Figure 2. Graph of the sine function on [-%, %]
Notice that the range of this restricted function is still [-1, 1].

Now we can obtain an inverse function, by reflecting the graph through
the liney = «.
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We call this function arcsine (denoted arcsin).

The domain of this function is [1, 1] and the range is Tuﬁ &
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Figure 3. Graph of the arcsine function
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The function arcsin : [-1,1] — qu ﬁ satisfies:

# = arcsin(x) = sin(f) ==z

Note that the reverse implication holds only if 8 is in the range of

arcsin, i.e. 6 € [-3,3]

Using properties of inverse functions, we can also say that for any
T T
z e _”.I.Mu M_a
arcsin(sin(z)) = z

and for any y € [-1, 1],

sin(arcsin(y)) = v.

51

This function is also referred to in some texts as Sin—1 where the
capital S denotes the restricted domain and the index -1 means in-
verse rather than reciprocal.

In this subject we will only use the arcsin notation.

This avoids potential confusion between Sin—1(z) and %

,

S K % -
Sin

= (osec
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Example: Evaluate arcsin AWV )

6 = acsia () '
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Example: Simplify arcsin Amw: Amvv )

woin(in(%)) =%

Nag \vﬂﬁ € ﬁ\ﬁf w\_\e./.w = Q\@x« @_Q\ AcSin
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arccos(x}
=

1.3.2 The cosine and inverse cosine functions
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Figure 4. Graph of the cosine function on [—2m, 2x]
In a similar way we can restrict the domain of the cosine function to
obtain a new one-to-one function.

In this case the restricted domain is chosen to be {0, #].
53

cos{X)

We call this function arccosine (denoted arccos).
The domain of this function is [—1, 1] and the range is [0, ].
|

-1 0 i 1
Figure 6. Graph of the arccosine function
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The function arccos : [—-1, 1] — [0, 7] satisfies:
= cos(f) ==z

8 = arccos(z)
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Figure 5. Graph of the cosine function on [0, 7]

The range of this restricted function is still [—1, 1].
We can obtain an inverse function, by reflecting the graph through

Note that the reverse implication holds only if 6 is in the range of

arccos, i.e. 8 € [0,7] .
Using properties of inverse functions, we can also say that for any

z € [0, 7],
arccos(cos(z)) ==z

andforanyy € [-1,1],
cos(arccos(y)) = y.

the line y = =z.
54
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Example: Evaluate arccos(-1).

b 6= wecas ()

= 8u¢“.\,

1.3.3 The tangent and inverse tangent functions

et
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(K8 \s\/&ﬁ\ e%\ Figure 7. Graph of the tangent function on [-2x, 27]
esccos,  LOT)
! In this case we can restrict the domain of the tangent function to
AIW wv to obtain a new one-to-one function.
Notice that the endpoints are not included in this case. Why?
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Example: Evaluate arccos Amwz Almvv ) < / A
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O = orccos (( Na(-%1))

= arccos (-3
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L]

X X

Figure 8. Graph of the tangent function on (~%, %)
The range of this restricted function is still R.
We can obtain an inverse function, by reflecting the graph through

the liney = z.
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tan(x}
.m Example: Evaluate arctan(1) .
i d
A /m:
o b &= oetan(1) j
A weanto
" “ =) tta & = |
P
S =) - \ -—
PR A ! \ T “
We call this function arctangent (denoted arctan). ﬁ
The domain of this function is R and the range is (—3Z, 5 ). \ —_
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Figure 9. Graph of the arctangent function
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Example: Evaluate sin(arctan(—v/3)).
&

The function arctan : R — Alm, mv satisfies:

6 = arctan(z) = tan(@) ==z

-Note that the reverse implication holds only if 8 is in the range of

arctan,i.e. 6 ¢ Almu .mmv .

Using properties of inverse functions, we can also say that for any
ze (-33)

arctan(tan(z)) ==z
andforany y € R,

tan(arctan(y)) = v.

1 L arcsin
Beware! arctan = =
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Summary

arcsin : [-1,1] — va

[ "]
|
)

td
2

arccos : [-1,1] — [0, 7] S A I

arctan : R — AIH HV
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Additional questions

You can attempt a selection of problems from 35-43 in Chapter 1.5
of the textbook.
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Homework: Evaluate the following:

{a) cos Am.‘nmm: AIQMVV
{b} arccos Aﬁmz Almvv

{¢) arctan(sin («))

{d) arcsin Am_: Amldv

Answers: (a) N D)7 ()0 (@3
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