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Introduction

In this project, building on the work of [2], we model a system of two interacting
intensive care units (ICUs) as a continuous-time Markov chain (CTMC), where each
unit may choose a threshold occupancy level above which all incoming arrivals will
be diverted. [2] quantified the welfare loss (measured as the reduction in system
throughput) due to selfish behaviour in this game using the price of anarchy (PoA)
metric. We further develop their analysis by exploring the effect of heterogeneity in
service rates on the equilibrium strategies of each ICU and the PoA of the system.
This idea of service rate heterogeneity then motivates the development of a novel
extension of the [2] model. In essence, we consider a Bayesian game where each
ICU is privately informed about their service rate (type). his modified setup allows us
to model the effect of inter-unit communication by comparing welfare in the private
information case with the welfare when the players’ types are common knowledge.
We then proceed to compute the price of anarchy (PoA), price of stability (PoS)
and price of communication (PoC), which are the respective measures of system
inefficiency when the interacting ICUs do not communicate, communicate but do not
cooperate, and communicate and cooperate.

Model

We build on the basic model of [2]. The game consists of two players, namely, the
Nevill Hall (NH) and Royal Gwent (RG) hospitals, with respective bed capacities
cNH = 8 and cRG = 16. We model the evolution of the system as a continuous-
time Markov chain (CTMC), with the arrival rates for the two ICUs denoted by λNH
and λRG respectively and the service rates denoted by µNH and µRG. With the
assumption of no queueing, the state space of the model becomes the set S =
{(u, v) ∈ Z | 0 <= u <= cNH , 0 <= v <= cRG}, where u denotes the number
of filled beds at NH and v denotes the number of occupied beds at RG. We now
assume that each unitH chooses a diversion thresholdKH , such that 0 <= KH <=
cH , where if the occupancy at that unit exceeds this threshold, that unit will be in
diversion. The arrival rates of patients are then dependent on the diversion status
of the two players. More formally, we assume that the arrival rates of rates are of
the form λrH for H ∈ {NH,RG} and r ∈ {(l, l), (l, h), (h, l), (h, h)}. Here, l denotes
low demand (i.e. where a given ICU is not diverting patients), while h denotes high
demand (i.e. where a given ICU is in diversion). The generator of the CTMC thus is:

q(ui,vi),(uj,vj) =



uiµNH if (ui, vi)− (uj, vj) = (1, 0)

viµRG if (ui, vi)− (uj, vj) = (0, 1)

λ
(l,l)
NH if (ui, vi)− (uj, vj) = (−1, 0) and ui < KNH and vi < KRG

λ
(l,l)
RG if (ui, vi)− (uj, vj) = (0,−1) and ui < KNH and vi < KRG

λ
(l,h)
NH if (ui, vi)− (uj, vj) = (−1, 0) and ui < KNH and vi ≥ KRG

λ
(l,h)
RG if (ui, vi)− (uj, vj) = (0,−1) and ui < KNH and vi ≥ KRG

λ
(h,l)
NH if (ui, vi)− (uj, vj) = (−1, 0) and ui ≥ KNH and vi < KRG

λ
(h,l)
RG if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ KNH and vi < KRG

λ
(h,h)
NH if (ui, vi)− (uj, vj) = (−1, 0) and ui ≥ KNH and vi ≥ KRG

λ
(h,h)
RG if (ui, vi)− (uj, vj) = (0,−1) and ui ≥ KNH and vi ≥ KRG

0 otherwise

Finally, defining PH to be the steady-state probability distribution, UH =∑cH
n=0 nP

H(n)
cH

to be the utilisation and TH = µH
∑cH
n=0 nP

H(n) to be the through-
put for each hospital H ∈ {NH,RG}, each ICU aims to attain a utilisation rate that
is as close as possible to a utilisation target t. More precisely, we assume that the
ICUs simultaneously choose diversion thresholds KH , H ∈ {NH,RG}, such that
0 <= KH <= cH to minimise a quadratic loss function (UH − t)2. Then, for a given
choice of strategies, we define social welfare as the total system throughput (i.e.
TNH + TRG).

Effect of Service Rate Variation on the PoA

In their paper, [2] considered two variants of their basic model. In Case 1
(strict diversion), if both ICUs declare that they are in diversion, the demand
is lost from the system; however, in Case 2 (soft diversion), each ICU services
its own demand if both units decide to divert incoming arrivals. Specifically,
the state-dependent arrival rates in the two cases are the following:

Strict Diversion

λ
(r)
RG =


λNH if r ∈ (l, l)

λNH + λRG if r ∈ (l, h)

0 if r ∈ (h, l), (h, h)

λ
(r)
RG =


λRG if r ∈ (l, l)

λNH + λRG if r ∈ (h, l)

0 if r ∈ (l, h), (h, h)

Soft Diversion

λ
(r)
NH =


λNH if r ∈ (l, l), (h, h)

λNH + λRG if r ∈ (l, h)

0 if r ∈ (h, h)

λ
(r)
RG =


λRG if r ∈ (l, l), (h, h)

λNH + λRG if r ∈ (h, l)

0 if r ∈ (h, h)

We now perform some numerical experiments to test the effect of hetero-
geneity in service rates. The parameter values used in the original paper
were µNH = 0.262 and µRG = 0.198. The effect of service rate variation
was ascertained by choosing different values of µNH and µRG summing to
0.262 + 0.198 = 0.46. To show this effect more clearly, it was decided to set
the capacities and arrival rates at the two ICUs to be equal instead of us-
ing the original parameter values in [2]. We choose cNH = cRG = 8 and
λNH = λRG = 1.5.

Fig. 1: Strict Diversion Fig. 2: Soft Diversion

In both cases, we see that differences in the service rates of the two ICU units
have a significant effect on the price of anarchy of the system, even when the
total service rate is constant. However, the effects are somewhat different
in the two cases. In the soft diversion case, the minimal price of anarchy
occurs when µNH = µRG = 0.23, with the PoA increasing sharply on both
sides as the service rates become more asymmetric. In contrast, with strict
diversion, although the minimum PoA once again occurs when the service
rates are equal, asymmetry does not necessarily lead to a higher PoA. Thus,
it certainly appears that skewed service rates can accentuate the effects of
selfish incoordination in this game, although this effect is more pronounced
when demand is conserved in the system.

Extension to Bayesian Model

The insight from the previous section that service rate heterogeneity can amplify the
effects of competitive incoordination motivates the development of a new model incorpo-
rating private information and communication. We adapt the model of [1] and assume
that the two ICUs are privately informed about their service rate µH (type). For analytical
simplicity, suppose that each player’s type is randomly and independently chosen at the
start of the game by Nature from the type space {µNH , µRG} with equal probability. Each
player knows their own type, but not the type of the other ICU unit. Now, we compute
social welfare (system throughput) under three scenarios:
Case 1: Communication and cooperation. Both ICUs reveal their service rates and
then cooperatively choose strategies to maximise system throughput.
Case 2: Communication, but no cooperation. The ICUs reveal their types at the start
of the game, but do not play cooperatively. We compute Nash equilibria and social welfare
for the perfect-information game defined by each pair of types, and take the expectation
to calculate the expected system throughput.
Case 3: No communication or cooperation. Here, the agents’ types are private in-
formation, and their strategies involve specifying a diversion threshold for each possible
value of their type. We then look for a Bayes Nash equilibrium and compute the welfare
corresponding to such a strategy pair.
We define the price of anarchy (PoA) as the ratio of welfare in Case 1 and the lowest
welfare at a Nash equilibrium in Case 3; the price of stability (PoS) as the ratio of wel-
fare in Case 1 and optimal welfare at a Nash equilibrium in Case 2; and the price of
communication (PoC) as the ratio of optimal social welfare in Cases 2 and 3.

Results

We compute the PoA, PoS and PoC for various service demands and utilisation targets
(see [2] for the relevant notation). For brevity, only the strict diversion case is shown.

Fig. 3: PoA, PoS and PoC for different target and demand rates

Examining the trends in the tables, we see that the PoA and PoS increase with demand
for a fixed target, and decrease with the target for fixed demand. These findings largely
mirror those in [2]. In essence, greater demand exacerbates the effect of strategic incoor-
dination, while a higher value of the target tends to increase system throughput, thereby
lowering the PoA and PoS. The most interesting finding is the PoC is sometimes less
than 1, suggesting that the absence of communication can be a countervailing influence
against the competitive incentives of the players, thereby increasing equilibrium welfare.
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