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Introduction

Anomaly detection has a myriad of real-world applications such as intrusion dec-
tection, fraud detection, or discovering unknowing diseases. With the ability to learn and
approximate the density of input features, deep generative models are widely viewed to
be able to detect outliers. However, recent works have demonstrated that certain deep
generative models, such as flowed-based models, VAEs ([6]), and PixelCNNs ([13]) often
assign a higher likelihood to dataset that differ from the one upon which the models were
trained [11, 4]. For example, model trained on CIFAR-10 ([7]) and FashionMNIST ([14])
assign higher likelihood to out-of-distribution test datasets SVHN ([12]) and MNIST ([8])
respectively.

To investigate this peculiar phenomenon, we choose VAEs model specifically to
replicate the experiment. Surprisingly, the phenomenon can only be observed in model
trained on CIFAR-10 and tested on SVHN but not for the model trained on FashionMNIST
and tested on MNIST.

We also study two proposed solution seeking to address the strange problem with-
out having to provide a directed supervision such as giving the neural networks a means
of assigning anomaly score to input [3, 9, 10].

Background

We begin by briefly reviewing the definition of VAEs models. We assume our
training data x is generated from a latent representation z that follows distribution p(z)
(usually a standard Gaussian is used). Thus, our training data is sampled from distribution
p(x|z). We are interested in finding the parameter θ that make our model approximating to
the true but unknown data distribution p(x|z). This is equivalent to finding θ that maximise
the likelihood of reconstructing training data:

pθ(x) =

∫
p(z)pθ(x|z)dz

However, computation of this equation is intractable, therefore, require the use of ap-
proximation techniques such as variational inference. In addition to decoder network
pθ(x|z), which decodes the representation vector back to the original space, we define
additional encoder network qφ(z|x), which maps the high-dimensional input data into a
lower-dimensional representation vector, (often followed a multivariate Gaussian) that ap-
proximates pθ(z|x). This enables us to derive a lower bound on the data likelihood that is
tractable, so we can optimize:

logpθ(x) ≥ Eqφ(z|x)[logpθ(x|z)]−KL[qφ(z|x)||p(z)]] = ELBO (1)

where equality holds iff qφ(z|x) ≡ pθ(z|x). Our objective is to train the encoder and
decoder neural networks parameterized by φ and θ respectively to maximize the lower
bound. By maximizing this lower bound function, the first term of the right-hand-side of
Eq.(1) maximize the likelihood of original input being reconstructed, while the second term
make the approximate posterior qφ(z|x) close to prior pθ(z), standard normal distribution.
In addition, the reparametrization trick is used to reduce the variance of the gradient
estimate.

Fig. 1: Diagram of a VAE model, adopted from [1]

Experiment

We trained a VAE model architecture on FashionMNIST and CIFAR-10. We then caluculated
the value of ELBO, which approximate the log-likelihood, of the two test datasets with the same
dimensionality - MNIST and SVHN respectively. It is expected that the models assign a higher
probablity to this test data, although they were not trained on it, as shown in [11]. However, our
model successfully learn to assign lower probability to outlier test dataset MNIST on a FashionMNIST
trained model (Figure 2a). The strange behaviour only persists for the CIFAR-10 vs SVHN case
(Figure 2b). We believe one of the reasons leading to this phenomenon with CIFAR-10 and SVHN
dataset is, and also pointed out in [11], that both these two datasets have roughly the same mean
but SVHN has a smaller variance, which resulting in having a higher likelihood.

a) b)
Fig. 2: Histogram of VAE ELBO values for FashionMNIST vs MNIST (a), CIFAR-10 vs SVHN (b).

Proposed Solutions

The first paper claims that the counter-intuitive behavior of assigning higher likelihood to out-
of-distribution test dataset in VAEs is due to the models’ lack of capacity in learning the ground
truth, true distribution [2]. Their proposed solution is, therefore, increasing the model capacity by
increasing the number of channels in the convoluted neural networks. Although this idea is intriguing
and ostensible, the original authors decided to retracted the paper due to an error in their empirical
experiments. We independently run the proposed sufficient-capacity model but it could not produce
the expected result, assigning lower likelihood to outlier test dataset SVHN on a CIFAR10 trained
VAE model. Thus, we agree with the paper’s authors decision to retract and delay the publish until
the underlying problem can be better understood.

Secondly, we propose to look at forward Kullback-Leibler divergence (KL) instead of reverse
KL as currently used for variational inference in VAEs models. Due to the difference in computation,
forward KL can alleviate the issue of covariance underestimation and light tails in reverse KL [5].
In variational inference, we seek to find a candidate distribution q∗ in a family of distributions Q
according to some criterion. The typical criterion is to minimize KL(q||p) (reverse KL), where p is
the target distribution. This turns out to be equivalent to maximising the ELBO. Alternatively, we can
seek a distribution q∗ satisfied:

q∗ = argminq∈Q KL(p||q) = argminq∈Q Ep[logp]− Ep[logq] (2)

Since the expectation is under the target distribution p, we can not compute the forward KL diver-
gence KL(p||q) exactly. However, with simple rearrangement, we can make the expectation in Eq.2
under the approximated distribution q as follows:

KL(p||q) = Ep [log
p

q
] = Eq [

p

q
log

p

q
] (3)

In addition, [5] pointed out that Eq.3 can be approximated, resulting in variational inference can be
trained using forward KL. We, therefore, believe that using forward KL instead of reverse KL in VAEs
may help mitigate the out-of-distribution phenomenon.

Conclusion

We have shown that with our proposed architecture, VAE model can recognize
outlier test dataset MNIST when trained on FashionMNIST as opposed to its failure in
[11]. However, we agree with [11] that the peculiar phenomenon can still be observed
when testing out-of-distribution test data SVHN against a CIFAR-10 trained model. Be-
cause of this unstable performance, it is recommended that we should be cautious when
using these models with potential out-of-distribution inputs. Moreover, we suggest try-
ing to use forward KL instead of reverse KL for variational inference in VAEs models.
Although we have not been able to implement this empirically due to time constraints,
we believe the strange out-of-distribution phenomenon in VAEs might be alleviated by
following this direction.
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