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Introduction

The timing of people’s contact patterns plays an important role in
the transmission of disease or diffusion of information in a network.
The transmission of disease between two people occurs only when
both of them are active and there are different activity patterns for
each. These patterns will affect the spread because the probability
of people becoming inactive varies with their own patterns during
the infectious period. For example, the diffusion process could
differ in two different networks: a network where people become
active randomly in each period and another one where people’s
active state is highly correlated to their previous behaviour. [1]
studies diffusion on some small networks where individuals have
different activities patterns and concludes that mixing different
types can maximize the diffusion. In this poster, we model the
diffusion process by using multitype branching process and simple
SIR model, concluding that correlated activity patterns can affect
the disease extinction probability in a non-monotonic way.

Model

We define the people being active randomly for each period with
probability λ as Poisson people since their active state is memo-
ryless: independent for each period, and the people whose active
state is highly or perfectly positively correlated with their previous
behaviour as sticky people (assuming either always active (with
probability λ) or always inactive (with probability 1 − λ)). The
diffusion follows the simple SIR model and approximates to a
branching process. Assume there is one initial infectious person
with the rest of the population being susceptible. Infectious people
can pass the disease only in T periods and will be removed after T
periods.

In the total population, there are α proportion of Poisson people
and 1− α proportion of sticky people. Assume the number of sus-
ceptible people connected to the infectious person follows Po(Λ).
Among these connected people, the number of Poisson people Dp
and sticky people Ds then follow Po(αΛ) and Po((1−α)Λ). To suc-
cessfully pass the disease from one to another, two people need
to be connected and be active in the same period. We calculate
the probability of an individual successfully passing the disease
to another person, (e.g. Pr(p → p) = (1 − (1 − λ2)T )). Dp→p,
the number of Poisson people that an infectious Poisson person
successfully passes the disease to, follows Po(αΛ(1− (1− λ2)T )).
Similarly, we can get the distribution of Dp→s, Ds→p, and Ds→s.

Let (Z
j
t )t,j≥1 be the number of connected susceptible people given

by person j at time t, which are non-negative integer-valued i.i.d
random variables with finite mean. A Galton-Watson Branching
Process (Xt)t≥1 with offspring distribution ζ(Z

j
t ) is a Markov Chain

with X0 = 1. Given Xt−1, Xt =
∑Xt−1
j=1 Z

j
t [2]

In our model, there are two processes so we define X
j
t,i where

i = {p, s}. X(j)
t,s =

∑Xt−1,s
j=1 D

j
t,s→s +

∑Xt−1,p
i=1 D

j
t,p→s.

This branching process can be simply graphed by:

Fig. 1: Branching process with two types: Poisson agents and sticky agents

Black lines denote a connection with two agents. The lines without
red cross mean the disease is successfully passed from one to
another while the ones with a red cross mean disease fails to be
passed because two agents are not active at the same time within
the infectious period, though they are connected.

R0

The mean number of one type of infected people in one generation (also referred to as R0)
can be linked to the previous generation by transition probabilities matrix:[

E(Xp,n)
E(Xs,n)

]
=

[
E(Dp→p) E(Ds→p)
E(Dp→s) E(Ds→s)

]n+1 [
E(Xp,0)
E(Xs,0)

]
.

Let Q be the transition matrix and r be the Perron-Frobenius root of Q.
By [3], if r > 1, then (E(Xp,n), E(Xs,n)) → ∞; if r = 1, then (E(Xp,n), E(Xs,n)) = 1;
if r < 1, then (E(Xp,n), E(Xs,n)) → 0 and by Markov inequality we know the extinction
probability→ 1.

Let λ? be the λ such that r=1, for given α, Λ and T . By calculating the Perron-Frobenius
root of Q, we conclude that for given Λ and T , increasing the proportion of sticky people
(lower the α), can decrease the λ?.

Extinction Probability

The mean number progeny R0 < 1 implies extinction probability → 1 while R0 > 1 only
implies there is a positive chance of non-extinction. The following will investigate more of
exact form of extinctino probability.

Let qi be the extinction probability of disease when Zj0,i = 1 for i = {p, s}. Similar to [3], for
all i = {p, s}, if r ≤ 1, then qi = 1; if r > 1, then qi < 1. Additionally, let s be 2-dimensional
nonnegative vector s = (s1,s2) such that ‖s‖ ≤ 1, the only nonnegative solutions of the
equation f(s) = s are 1 and q, where fi(s) is the joint generating function for (Z(T,p), Z(T,s)).

Regrading the joint generating function, we introduce a random variable A (with its realized
value a) which represents the number of the active periods of a Poisson infectious person.
It is set to capture the dependency of the joint distribution of Dp→p and Dp→s. We then
solve the equation that:

qp = fp(q) =

T∑
a=1

e[αΛ(1−(1−λ)a)(qp−1)+(1−α)Λλ(qs−1)]
(
T

a

)
λa(1− λ)T−a + (1− λ)T ,

qs = fs(q) = e[αΛ(1−(1−λ)T )(qp−1)+(1−α)Λλ(qs−1)].

Fig. 2: Extinction probability 1

The diagrams show a decrease in weighted extinction probability when there are more
sticky people in the population (α ↓). This is because the extinction probability of sticky type
as the initial person (qs) is lower than that of Poisson type as the initial person (qp), which
means that the weighted extinction probability is dominated by qs. This is because that if a
person is randomly selected in the total population and we perform the branching process,
then more sticky people in the population can improve the diffusion. The intuition is that
once sticky people got infected, they are active onward and they can pass the disease
successfully once their susceptible connections become active at least once within their
infectious period. This makes sticky people better senders.

However, given one type of the initial person, adding more sticky people in the population
affects the extinction probability in a non-monotonic way. When λ is small, e.g. 0.2-0.4,
both qp and qs are lower when increasing the number of sticky people. When λ is relatively
large, e.g. >0.5, both qp and qs start to change the trend - increase - when increasing the
number of sticky people. A possible reason is that the probability of a Poisson/sticky person
successfully passing the disease to a Poisson person is higher than that of them passing
the disease to a sticky person, and their gap becomes larger when λ is relatively large, even
though infectious people are more likely to have more connected susceptible sticky people
in both branching processes when α increases.

Extension of other type of sticky person

To model more realistically, we define another type of sticky people, which decreases their
‘stickiness’: their active status will maintain until infected and they have probability 1 − λ to
become inactive in the next period. This extension includes an incubation period in the case
of the disease model.

Alternatively, we apply the similar calculation and the result is that proportion of sticky and
Poisson people that minimizes the weighted extinction probability varies with λ:

Fig. 3: Extinction probability 2

We see that for small λ, qs takes a lead role which makes weighted extinction probability higher
when increasing the number of sticky people. However, from λ = 0.4 to 0.5, it demonstrates a
clear turning point of weighted extinction probability, indicating that a certain mixed combina-
tion of sticky and Poisson people can maximize the diffusion. When λ becomes even larger,
extinction probability follows a similar pattern to the previous one as large λ increases the new
sticky people’s ‘stickiness’ to approximate to the previous one. Also, both qs and qp show an
upward trend as α decreases, indicating that ’stickiness’ pattern impedes the diffusion process
if the first infectious person’s type is fixed.

Concluding Remarks

This poster discusses the effect of different activity patterns (sticky or Poisson) on the spread
of a diffusion in a network that is well approximated by a branching process. Two cases
regarding types of sticky people are considered: No latent period and latent period. We
conclude that the effect is determined by the degree of correlation of sticky people and
whether the initial infectious person is given.

In the first case, if the initial infectious person is randomly selected based on the proportion of
Poisson and sticky people in the total population, perfectly positively correlated activity pattern
can maximize the diffusion while if the initial infectious person’s type is given (either s or p),
sticky people affect the extinction probability in a non-monotonic way. In the second case,
heterogeneity in the activity pattern might improve the diffusion if initial infectious person is
randomly selected while sticky people impede the diffusion if the initial infectious person’s type
is given. This result can guide policy implementation for improving the spread of information
and transmission of disease based on the different correlated activity patterns in the society.

The next step would be to investigate the robustness of the offspring distribution with distribu-
tion other than Poisson. Also, we can consider adding more heterogeneity types to improve
the practicability of the model and modelling the diffusion in two structure: household and
global one.
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