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Introduction
Geodesics are sufficiently well-behaved curves ~x
between two points on a manifold that extremise
the length.
Variational calculus gives the equations govern-
ing geodesics, and hence we find geodesics on a
number of surfaces.
We also investigate the winding and crossing of
geodesics on the cone, and use its intrinsic lack of
curvature to reduce the problem of geodesics on
the cone to geodesics on the plane.

Variational calculus
A geodesic ~xmust extremise the length functional

L [x(t)] =

∫ t1

t0

√
gµν(~x(t))

dxµ

dt

dxν

dt
dt, (1)

where ds2 = gµν(~x)dxµdxν is the metric on the
relevant manifold, and the integrand is the La-
grangian L. Variational calculus tells us that ~x is a
stationary curve of L if and only if it satisfies the
Euler-Lagrange equations, (2).

Computing geodesics
The Euler-Lagrange equations are given by

∂L

∂~x
− d

dt

[
∂L

∂~̇x

]
= ~0. (2)

These govern the form of geodesics. Note that we
do reparametrise the geodesic ~x in (1) for some co-
ordinates systems.

• In R2 with the Euclidean metric, geodesics
take the form αx + βy = γ. These are just
straight lines, which matches intuition.

• On an infinite cylinder, geodesics from
~x(φ0) = (φ0, z0) to ~x(φ1) = (φ1, z1) look like

z − z0
z1 − z0

=
φ− φ0

φ1 + 2πk − φ0
, φ ∈ [φ0, φ1+2πk]

for any k ∈ Z, where k induces winding
around the cylinder. These are helices.

• On the sphere, geodesics take the form

φ(θ) = arccos (α cot (θ)) + β.

These are arcs of great circles.

• On the cone, we first simplify (2) using
symmetry. Geodesics between points
~x0 = (ρ0,−∆φ) and ~x1 = (ρ0,∆φ + 2πk) of
the same height take the form

ρ(φ) =
ρ0 cos (sin (α)(∆φ+ πk))

cos (sin (α)(φ− πk))
, (3)

where φ ∈ [−∆φ,∆φ+2πk] for certain k ∈ Z
(see (4) in Permissible winding). Here α is
the angle the cone makes with the z-axis.

Figure 1: Geodesics on the cylinder, sphere and cone
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Counting crossings

C =

{
k k ≥ 0

−k − 1 k < 0

Let C be the number of crossings a geodesic ex-
hibits on the cone between points (ρ0,−∆φ) and
(ρ0,∆φ+ 2πk) of the same height. By considering
(3), we get the formula shown to the left.
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Another approach
Since T locally preserves distance (see Curvature
of the cone), parametrised geodesics on the cone
are mapped to geodesics in the plane. So apply-
ing T−1 to the general straight-line in the plane,
the geodesic between (ρ0, φ0) and (ρ1, φ1) is

ρ(φ) =
ρ0ρ1 sin ((φ1 − φ0) sin (α))

ρ1 sin ((φ1 − φ) sin (α)) + ρ0 sin ((φ− φ0) sin (α))
,

where φ ∈ [φ0, φ1] includes desired winding.
Viewing the geodesics in the plane also gives a
nice way to understand the limitation (4) on wind-
ing, as we must avoid passing through the origin.

Figure 2: Geodesics mapped to the plane

Permissible winding

Assuming 0 < ∆φ ≤ π/2, equation (3) makes
sense exactly when∣∣sin (α)(φ− πk)

∣∣ < π

2
∀φ ∈ [−∆φ,∆φ+ 2πk]

⇐⇒ −1

2 sin (α)
− ∆φ

π
< k <

1

2 sin (α)
− ∆φ

π
. (4)

The integers k satisfying (4) give the possible
winding numbers for the geodesic between two
points of the same height. For points of gen-
eral position on the cone, mapping parametrised
geodesics to the plane using T (see (5)) gives∣∣(∆φ+ 2πk) sin (α) + ∆φ sin (α)

∣∣ < π

which is exactly equivalent to (4)! So permissible
winding is not dependent on ρ0 and ρ1.

Curvature of the cone
Consider the bijection T : R+ × R 7→ R+ × R,

(ρ, φ) 7→ (ρ csc (α), φ sin (α)) (5)

mapping points on the cone to points on the
plane. The infinitesimal line element is invariant
under T , so the cone has no intrinsic curvature.

Now the Ricci curvature scalar R can be com-
puted from parallel transport, which is given by
the Levi-Civita connection derived from gµν . In-
deed, R = 0 at all points on the cone except the
tip where it is undefined.

Figure 3: Parallel transport of a vector around the tip

Parallel transport of a vector around the vertex
results in a rotation of β = 2π(1 − sin (α)). The
total curvature of the cone can also be computed as
β by considering the cone as the limit of a smooth
surface. So all the curvature must be in the tip.
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