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The problem class:
Let E be an Euclidean space, and consider N constraint sets C

1
, 

C
2
 , … ,  C

N
 ⊆ E. A feasibility problem asks for an x ∊ E  so that 

Projection operator
Given a set A, define the projection operator P

A
 as 

In other words, P
A
(x) projects x onto the set of closest points in A.

Define the reflection operator, R
A
 as 

Douglas-Rachford (DR) algorithm
Suppose we had 2 constraint sets, A, B ⊆  E

Let x
0 
∈ E. Define the sequence x

k
 by

It is known that when A and B are convex, and A∩B ≠ Ø, 
P

A
(x

k
) converges to an x∊A∩B.

To generalise to N sets C
1
 … C

N
, define new constraint sets 

so C,D∊EN and run Douglas Ratchford on  C and D

Malitsky-Tam (MT) algorithm
An algorithm recently devised to prove a theoretical bound and 
can be specialised to find the intersection of N convex sets. 
However, its numerical performance has not been as well studied 
as Douglas-Rachford. See page 9, [2] for the specific algorithm. 

N-M Queens
N-M queens problem generalises the N queens problems. This 
problem asks for NM queens to be placed on an N×N chessboard 
such that at exactly M queens are placed on each row and 
column, and at most M queens are placed in each diagonal.

To formulate it as a feasibility problem, let E =ℝN×N, such that for 
all x∊E,  x

ij
 = 1 if (i,j) contains a queen and 0 otherwise. Then, we 

can define the following 4 constraint sets 

We also impose that each constraint set contains only entries 
from 0-1, which empirically improves performance (See section 
4.1, [1] 

However, note these constraints are not convex, so there is no 
satisfactory mathematical justification for why this algorithm 
works.

Experiment:
Each trial proceeded as follows:

Noise optimization
Adding a small amount of noise uniformly distributed within [-0.01, 
0.01] to each cell each iteration has a profound effect on the 
performance of the algorithm.

Results:
For (N,M) = (20,2), over 200 trials,

A visualiser was coded to inspect the performance of the 
algorithm. With DR, many of the starting values failed because  
the algorithm would “get stuck” on a fixed point or small cycle, 
that was not a valid solution. However these fixed points are quite 
unstable, and adding noise would allow the algorithm to 
“escape”, improving the performance.

MT on the other hand, does not appear to suffer from getting 
stuck in fixed points, and adding noise simply disrupts the entire 
algorithm. Hence DR’s tolerance to noise is actually quite notable!

Learn more about this project: explorations in 
sudoku, and more details!
There are more marvellous insights for which this poster is too 
narrow to contain, so here is a link to my blog post!
https://theepiccowoflife.github.io/2022/02/05/projalgo 
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 • Each row must add to M  • Each column must add to M

 • Each forward diagonal must add 
to at most M

 • Each backward diagonal must 
add to at most M

Initialise x_0 randomly
For k from 1 to 5000:
    Calculate x_k
    If x_k is a valid solution:
        Record the success, and 
        value of k in the median

Success 
rate 

Median 
iterations

Average time per 
successful trial (ms)

DR, no noise 87.5% 189 12.789

DR, with noise 100% 112 9.700

MT, no noise 99.5% 1069 59.357

MT, with noise 15.5% 3165 202.903

Pictured is PD(x
k
) , for a 4-2 

queens problem generated 
by DR with no noise .
For k > 100 this board 
remains relatively 
unchanged.
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Image credit: [3] 
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The problem class:
Let E be an euclidean space, and A_1, A_2 … A_n 
be sets A_i ⊆ E. A feasibility problem asks for an 
x ∈ E such that 
$$x \in A_1 \cap A_2 \cap \dots \cap A_n$$

Projection, Reflection operator
Define the (possibly set valued) projection 
operator P_A as 
$$P_A(x) = {c \in A | ||x-c|| is minimal}$$
In other words, P_A(x) projects x to the closest 
point in A.

The reflection operator R_A is the (set valued 
mapping) defined as 
$$R_A = 2P_A - Id$$S

The green blob is our set A, and p_1, p_2 \in R

Douglas-Ratchford algorithm
Suppose we had 2 sets, A, B \subset E

Let x_0 \in E. Define the sequence x_k by
$$x_{k+1} = \frac{Id + R_B R_A}{2}x_k$$

It is known that when A and B are convex, and A 
\cap B \neq \null, P_A x_k converges to an x \in A 
\cap B.

To generalise to n sets A_1, …, A_n, define new constraint 
sets 
$$C = A_1 \times … \times A_n \text{ and } D = {(x,x,\dots,x) | 
x \in E}$$
so C,D \in E^n and run Douglas Ratchford on C and D.

Malitsky-Tam algorithm
An algorithm recently devised to prove a 
theoretical bound for a more general form of this 
class of problem. However, its numerical 
performance has not been as well studied as 
Douglas-Ratchford. See page 9, [x] for the 
algorithm

Suppose we had N constraint sets, A, B \subset E

Let x_0 \in E. Define the sequence x_k by

$$x_{k+1} \in \frac{\text{Id} + R_B R_A}{2} x_k$$

It is known that when A and B are convex, and A \cap B 
\neq \null, P_A x_k converges to an x \in A \cap B.

To generalise to N sets see [x] for the product space 
formulation

N-M Queens
N-M queens problem generalises the N queens 
problems. This problem asks for nm queens to be 
placed on an nxn chessboard such that at exactly 
m queens are placed on each row and column, 
and at most m queens are placed in each 
diagonal.

(A valid solution: will take a better photo later)

To formulate it as a feasibility problem, let E = 
R^(nxn), where for x \in E, x_ij = 1 if (i,j) contains a 
queen and 0 otherwise. Then, 4 constraint sets 
can be defined for rows, column


