
The handshake game is a classroom
activity designed to simulate the
outbreak of a disease. One participant
plays the initial carrier, and the virus
will spread through “handshakes”.
Read more: https://go.unimelb.edu.au/gj3i.

This project aims to model a disease
epidemic through this game. Data
has been collected from a simulated
population of 100 participants, each
engaged in 5 handshakes and the
infectious period is set to 5.
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It is observed that the handshake 
game can be modelled via the SIR 
model, with the transmission rate, β, 
modelled by an arctan function 
against time, and the recovery rate, 
γ, modelled by a step function. 

The varying transmission rate 
overtime corresponds to the nature 
of the game: The participants who 
are moved to the I group at an 
earlier stage were more likely to be 
infected within their first few 
handshakes,  thus infecting all other 
participants they shook hands with 
afterwards;  whereas for the 
participants who were later moved 
to the I group, they were more likely 
to be infected in their last few 
handshakes, thus not infecting many 
others. This explains the decrease in 
the transmission rate overtime. 

A stochastic modelling approach 
were also taken at the later stages of 
the project, but the results are not 
presented on this poster. 
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Whether it’s a seasonal cold or the
COVID-19, studying the outbreak of a
disease has always been a big subject
of scientists and mathematicians.
Those studies are essential for
predicting the progress of epidemics
and how to best control them.

The Susceptible, Infected and
Removed (SIR) model is a well-known
model in mathematical epidemiology.
It is based on three assumptions that:
1) The population is constant and

homogenous mixing.
2) The rate of transmission, β, is

constant
3) The rate of recovery, γ, is also

constant
Let S(t), I(t), R(t) be the respective
number of people in the
corresponding group at time t. Under
continuous and discrete timelines, the
model can be written as follows:

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 (𝑢𝑠𝑖𝑛𝑔 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑣𝑒𝑠):
𝑑𝑆
𝑑𝑡 = −𝛽𝐼𝑆
𝑑𝐼
𝑑𝑡 = 𝛽𝐼𝑆 − 𝛾𝐼
𝑑𝑆
𝑑𝑡 = 𝛾𝐼, 𝑡 ∈ ℝ

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒:
𝑆 𝑛 + 1 = 𝑆 𝑛 − 𝛽𝐼 𝑛 𝑆 𝑛

𝐼 𝑛 + 1 = 𝐼 𝑛 + 𝛽𝐼 𝑛 𝑆 𝑛 − 𝛾𝐼 𝑛
𝑅 𝑛 + 1 = 𝑅 𝑛 − 𝛾𝐼 𝑛 , 𝑛 ∈ ℕ

𝑊ℎ𝑒𝑟𝑒 𝑆 0 = 99, 𝐼 0 = 1, 𝑅 0 = 0

The model did fit the data to a certain
degree, yet not to a reliable extent. Some
notable observations are:
1) During the first five days there are no
recovered patients (due to the infectious
period) yet recovered patients has been
modelled.
2) There is a difference between the
peak/parabolic behavior of the early
infectious population.
3) The asymptotic behavior of S and R varies
significantly from the observed data.

Based on those observations, the following
conclusions are made:
a) The parameter γ is required to be a step

function, remaining as 0 for the first
infectious period.

b) The parameter β needs to be larger at
the initial time intervals (i.e. peaking at
t=6), but then decreases and eventually 
approaches a smaller value as t
increases (to counter difference in
asymptotic behaviors).

One of the functions which follows the
behavior of the described β is a transformed
arctan. For example, the graph below plots
y = arctan(-x+2)+1.5:

Now, let β = a*arctan(b*t+c)+d, where a,b,c,d are
parameters. Let γ be a step function s.t. γ=0 for t
∈ [0,5]. Using the same method of minimizing
RSS, the following values are calculated:
𝛽 = 0.0064×arctan −0.2582𝑡 + 2.3872 + 0.0038

𝛾 = S 0, 𝑡 ∈ [0,5]
0.5087, 𝑡 > 5

The new calculated values of S, I, R are plotted
together with observed data in diagram 2.
Evidently, the updated model has a much-
improved fit with the observed data, seemingly 
more reliable and consistent. Implementing the 
alterations based on the SIR are shown to be 
essential to fit data from the handshake game.
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As a starting point, the discrete time SIR 
model was fitted to the data. Using the 
method of gradient descent, the values of 
β=0.0155, γ=1 were found to minimise the 
residual sum of squares (RSS). The calculated 
values of S, I, R are plotted together with 
observed data in diagram 1. 
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