
LATTICE REDUCTION WITH APPLICATIONS TO CRYPTOGRAPHY

Boxiang Fu with supervisor Peter Forrester
Vacation Research Project

LATTICE REDUCTION WITH APPLICATIONS TO CRYPTOGRAPHY

Boxiang Fu with supervisor Peter Forrester
Vacation Research Project

Introduction

Lattice reduction is to find a nearly orthogonal short basis for a
given input lattice. Such a problem is usually very hard to solve
exactly on both classical and quantum computers. We can use
this fact to build a (presumably) secure post-quantum cryptosystem.

Lattices

Given a set of n linearly independent vectors B = {b1, ...,bn} in Rn,
a lattice is generated by the integral linear combination of B:

L = {
n∑
i=1

λibi|λi ∈ Z}

We note that the basis B is not unique. For n ≥ 2, every lattice has
infinitely many bases. For a matrix X whose rows contain the basis
of the lattice L, any of the below unimodular row operations can be
applied to get another basis of the same lattice:

• Multiply any row by -1

• Interchange any two rows

• Add an integral multiple of any row to another other row

Fig. 1: A 2 Dimensional Lattice with a "Good" (Red) and "Bad" (Green) Bases [2]

In general, it is hard to take a basis of long "bad" vectors and reduce
it to a basis of short "good" vectors. This fundamental problem
is called Lattice Basis Reduction. Two hard problems arising
from this is to find a non-zero vector of minimal Euclidean length
(Shortest Vector Problem) and given a vector t ∈ Rn not in L, find
a vector in L closest to t (Closest Vector Problem).

Lattice Reduction Algorithms

In 2-dimensional lattices L = {ax + by|a, b ∈ Z} the Lagrange-
Gauss algorithm terminates with a minimal basis for the lattice. Its
pseudo-code is presented next [1].

Lattice Reduction Algorithms

Algorithm 1 Lagrange-Gauss Algorithm
Require: A basis x, y of a lattice in R2 such that |x| ≤ |y|

1: Set v1← x and v2← y. Set finished← false
2: while not finished do
3: Set m← ⌈v2·v1

v1·v1
⌋

4: Set v2← v2 −mv1
5: if |v1| ≤ |v2| then
6: Set finished← true
7: else
8: Interchange v1 and v2
9: end if

10: end while
11: return v1 and v2 as a minimal basis of the input lattice

However, in higher dimensions, there generally does not exist an exact
algorithm for lattice reduction. The best currently known method is the LLL
(Lenstra–Lenstra–Lovász) algorithm which finds a moderately short bases
in polynomial time. An implementation can be found in [3].

Applications (Cryptosystems)

Shor’s algorithm meant that current public-key cryptosystems such as RSA
and discrete logarithm problems are rendered insecure once large-scale
quantum computers are readily available. The (postulated) hardness of
lattice problems make lattice-based post-quantum cryptosystems look
promising. We look at one such cryptosystem below:

The GGH (Goldreich-Goldwasser-Halevi) Public Key Cryptosystem [2]
Main idea: Public key is a "bad" (e.g. Hermite normal form) basis of some
lattice, private key is its "good" basis. Sender uses public key to map to a
lattice point and adds a small error term in the neighbourhood of the lattice
point. The receiver then solves the Closest Vector Problem (CVP) using the
"good" basis trapdoor, which is hard to solve using the "bad" basis.
Key Creation:
Private Key = {v1, ...,vn} a "good" basis of the lattice L
Public Key = {w1, ...,wn} a "bad" basis of the lattice L
Encryption: Write out plaintext m as a binary vector. Ciphertext is e =
m1w1 +m2w2 + ... +mnwn + r. Where r is a small error term.
Decryption: Find lattice point u closest to e by solving CVP. This can be
done using the "good" basis trapdoor by writing e = µ1v1+µ2v2+ ...+µnvn,
µ1, ..., µn ∈ R. We then round µ1, ..., µn to the nearest integer to give u =
⌊µ1⌉v1 + ⌊µ2⌉v2 + ... + ⌊µn⌉vn.
For appropriate (small) r, u = m1w1+m2w2+ ...+mnwn so we recover m.

Applications (Attacks)

Here we look at an attack on knapsack cryptosystems using lattice
reduction techniques:

The Merkle-Hellman Knapsack Cryptosystem [2]
Main idea: The ciphertext is t = x1a1 + ... + xnan. This can be
mapped to a very short vector in the lattice L with length at most√
n. We can use LLL to find lattice vectors that meet this criteria.

Key Creation:
Private Key: Superincreasing sequence of b1, b2, ..., bn with b1 ≈ 2n

and bn ≈ 22n. Positive integers m and w satisfying m >
∑n

i=1 bi
and gcd(m,w) = 1. And a permutation π of {1, ..., n}.
Public Key: Set {a1, ..., an} with ai ≡ wbπ(i) (mod m)
Encryption: Write out plaintext x = (x1, ..., xn) ∈ {0, 1}n as a
binary vector. Ciphertext is t = x1a1 + ... + xnan.
Attack: If x = (x1, ..., xn) ∈ {0, 1}n solves t = x1a1+ ...+xnan, then
v = (x1, ..., xn, 0) ∈ L, where

L =

1 0 0 · · · 0 a1
0 1 0 · · · 0 a2

. . .
0 0 0 · · · 1 an
0 0 0 · · · 0 −t

Since v has a short length of at most

√
n, applying LLL on L to

find short basis vectors in {0, 1}n finds v with high probability. Note
that the matrix L consists of only public information.

Acknowledgements

I would like to sincerely thank my supervisor Peter Forrester
for his guidance and encouragement over the Vacation Scholar
period. I would also like to express my gratitude to the School
of Mathematics and Statistics for providing me with this opportunity.

References

[1] M. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm
and Its Applications. Taylor Francis Group, 2011.

[2] J. Silverman. “An Introduction to the Theory of Lattices and Applications to
Cryptography”. In: Computational Number Theory and Applications to Cryptog-
raphy. 2006.

[3] The FPLLL development team. “fplll, a lattice reduction library, Version:
5.4.1”. Available at https://github.com/fplll/fplll. 2021. URL: https:
//github.com/fplll/fplll.

