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While 𝑃(winner = player 1) is simply 
!

!"#"$
 [2], determining their losing 

probability	is much more difficult. E.g. Consider the initial state (1, 2, 3):

Problem Specification

Given the initial state as input, the program can:
• Generate and solve the first step analysis equations;
• Generate 𝐿 !,#,$  for the initial and intermediate states.
• Export the equations and probabilities to a text file.

These are combined into the LoserAnalysis class.
Analysis in the ”Selected Results” section is also automated.

Program Functionalities

Selected Results

• The program uses the sympy library to solve equations.  
• 𝐿 !,#,$ = 𝐿 !,$,# . Our convention is to store the smaller stack at front. 
• To accommodate for slow execution large inputs, the program offers:

i. Fallback option: Approximates 𝐿 !,#,$ , by enumerating the game 
up to a fixed number of rounds (𝑡), using memoisation to 
optimise efficiency. The result is accurate to 2%&.

ii. Exception-handling: If the maximum recursion depth or time 
limit is hit, the program throws and catches an exception, then 
skips the current state / uses the fallback method.

Implementation Details

The probabilities generated are stored as CSV files in the project’s GitHub repository. We only present some 
remarkable results here.

3. Visualisation of 𝑳 𝒙,𝒚,𝒛 for varying 𝒙, fixed 𝒚 and 𝒛

The smallest such state is (2, 4, 5) vs. (1, 5, 5):

𝐿 ',(,) =
3529997

7036351
≈ 0.5016800611566989

𝐿 *,),) =
3522116

7036351
≈ 0.5005600203855664

The smallest such state is (2, 9, 10) vs. (1, 10, 10):

𝐿 ',+,*, =
327195

368089
≈ 0.888901868841503

𝐿 *,*,,*, =
8

9
≈ 0.8888888888888889

2. Similarly, when is player 1 better off giving away $1 to another player?

1. If player 1’s objective is not to lose, when are they better off giving away $1?

Key Observations

• The big jumps happen when player 1’s fortune is tied with another player’s fortune. 
• The function 𝐿 !,#,$  is not monotonic decreasing in 𝒙 (visible when we zoom into a flat segment).
• Given the same 𝑥, 𝑦, 𝑧 , the program executes faster on Game 2 than Game 1 (no. of intermediate 

states grows exponentially with base 6 in Game 1, but with base 3 in Game 2).
• Game 2 has more states where player 1 is not better off with an extra $1 (more flat segments).
• For both models, 𝐿 !,#,$  is fractal-like!
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Due to the ‘depth’ of the 
analysis, as the states become 
larger, it quickly becomes 
intractable to calculate by hand. 
Thus, I wrote a Python program 
to automate the analysis (with
guaranteed termination) and 
produce the exact 𝐿 !,#,$ ’s in 
fraction form. 

𝐿 !,#,$ =
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3
𝐿 $,!,# + 𝐿 %,&,# + 𝐿 %,!,'
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3
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1

3
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We study two variants of the models examined by Prof. Persi Diaconis 
[1]. Denote the players’ fortunes at each round as 𝑋&, 𝑌&, 𝑍& ∈ ℕ', 
which evolves as a Markov chain. Write 𝑋(, 𝑌(, 𝑍( = 𝑥, 𝑦, 𝑧 .

• Game 1: At each round, a giver and receiver are chosen at random.
The giver transfers the minimum of their fortunes to the receiver.

• Game 2: Only a receiver is chosen each round to receive min 𝑥, 𝑦, 𝑧 .

Define the following terminology / representations:
• Loser: First player to reach 0 (if tied in Game 2, pick one randomly). 
• Winner: First player to have all the money.
• 𝑳 𝒙,𝒚,𝒛 : Probability that player 1 loses, given initial state 𝑥, 𝑦, 𝑧 .

The research problem addressed is the difficulty of attaining 𝑳 𝒙,𝒚,𝒛  by 

hand. This poster presents an overview of the program I produced in 
response, and some further analysis on the first-hand data.

Introduction

The smallest* such state is (11, 19, 48) vs. (10, 19, 48):
𝐿 !!,!#,$% = 9505533830767552681325332460536243296492851849399342033764290735641529081784363354971001546676377024313257419331316917 

1878567165664636090433413549346556542318405224485002394984381187095762857031875372514851648744689876606583868833130789124944281795228465

4738673214410277893782426223384701540290921143078273287839698880724012451250170055782308083321973435371340847387859216007087622235865621

6355262548657371387855499893220300767863500018989926419644556351560167468150557905546740168393234581650793331708269728862569517012615864

81180710168736322560935541579312606018598919769976414734737645143600881893716186589372178139625701941/1781977679341565653879062316696873

8432477569983271536712319868523149518433213441869248413988212864124407801562834940404112578706727560878477149731918101076780906408169254

2704158384981828417284705119427008399746104598790307294201748170143987149291135520733374002287217775101669536582256671886738481160720021

5463380494510770187945490845928143445232732949053965144678241474218200604350499913285920102311013763668735307552502191738215421222671791

4936368792270340460363363600205029257226017910414902297593134822746299465920848726683501707045280321742201920572234233639669931523977995

36216014235688392527706247314395749592323268734337 ≈ 0.5334260883828699

𝐿 !&,!#,$% = 384927437348092865826787154522036966929331477671257388795406213322077025027329708904002230160514488758925861008529937 

2641865076307695712428629862510743966379144258747669183765648308949640633266498014775160083551908074040886977133195582955400146709753989

3736472089107670746944940138298692043311547964288456867952310747031559711923401123354938125594417587908704419279778529647788014939856406

6044668357513633952588377925634818352400474258882404223657377314751413083100101954283316910145455750718339182097013355811579429030093387

81392941800/7217263194771645633240126555255838476299049886246841503769225103997039449052747771980511648002392515987375937925303682666479

7405000819352675795582182050749468591950783638253168541197856184516316883369948927113568339288396113210508323149280922041533365800656183

4637915106023376987127445506182008039880270393859346595996143509931738007423070998446360400532405859776577658805815263294367324760378016

5125261773026254548974238037597139908155084767333005841357760140215127815456879580085371803405945673770446916448716439745218669565734873

6787 ≈ 0.5333426632230114

1 The smallest* such state is (4, 5, 11) vs. (3, 5, 11):

𝐿 (,),** =
164

243
≈ 0.6748971193415638

𝐿 -,),** =
2

3
≈ 0.6666666666666667

2

Figure 2.1: 𝐿 .,0,1 for 𝑥 ∈ 𝟏, 𝟒𝟎𝟎 , 𝑦 = 𝟐𝟎𝟎, 𝑧 = 𝟑𝟎𝟎,
zoomed into the range 𝑥 ∈ 𝟏𝟐𝟒, 𝟏𝟐𝟗 .

𝐿 !,#,$ =
1

6
(𝐿 %,$,$ + 𝐿 %,#,& + 𝐿 #,!,$

	 +𝐿 !,%,' + 𝐿 #,#,# + 𝐿 !,&,! )

	 =
1

6
1 + 1 + 𝐿 #,!,$ + 0 +

1

3
+ 𝐿 !,&,!

	 =
7

18
+
1

6
𝐿 #,!,$ + 𝐿 !,&,!

One step of the analysis has already 
introduced 6 intermediate states (but 
some can be ‘pruned’ early).

1

Figure 1.1: Modified transition diagram for Game 1,
illustrating how the program analyses state (1, 2, 3).

Figure 1.2: Modified transition diagram for Game 2. Figure 2.2: 𝐿 .,0,1 for 𝑥 ∈ 𝟏, 𝟒𝟎𝟎 , 𝑦 = 𝟐𝟎𝟎, 𝑧 = 𝟑𝟎𝟎,
zoomed into the range 𝑥 ∈ 𝟏𝟔𝟎, 𝟏𝟗𝟎 .

Figure 3.1: 𝐿 .,0,1 for fixed 𝑥 + 𝑦 + 𝑧 = 𝟐𝟎𝟎𝟎 in Game 1. Figure 3.2: 𝐿 .,0,1 for fixed 𝑥 + 𝑦 + 𝑧 = 𝟐𝟎𝟎𝟎 in Game 2.
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* by lexicographical ordering 

4. Visualisation of 𝑳 𝒙,𝒚,𝒛 for fixed sum, 𝒙 + 𝒚 + 𝒛

Future extensions
• Variants of the model: 

i. Players choose at random to give min 𝑥, 𝑦  or min 𝑥, 𝑦, 𝑧 .
ii. More than 3 players.

• Optimise program’s efficiency for large inputs.
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