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Introduction

An interesting application of the six-vertex model is found in the
enumeration of Alternating Sign Matrices (ASMs). ASMs are de-
fined as square matrices where each element can be a 0 a 1 or a
−1, each row and column must sum to 1, and the nonzero entries
alternate in sign —hence the name.

It turns out that there is a bijection between the m×m ASMs and
m×m lattices in the six-vertex model, and similarly between the
m ×m triangular lattices and m ×m diagonally symmetric ASMs.
Here is an example of a 4×4 ASM, and the corresponding six-vertex
lattice:

⎡

⎢

⎢

⎢

⎣

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

⎤

⎥

⎥

⎥

⎦

⟷

0
0
0
0

1 1 1 1
1
1
1
1

0 0 0 0

This bijection is useful as the enumeration of ASMs and their sym-
metry classes by standard means is a very difficult problem. In this
section we will explore how partition functions of six-vertex models
can be used to find this enumeration.

The Ice Point

The first step in achieving this enumeration from our partition
functions is finding a choice of variables such that each of the
Boltzmann weights are equal to 1. This evaluation point is referred
to as the ‘ice point’.

Here, each lattice has a contribution of 1 to the partition func-
tion, making it simply count the number of valid lattices. By the
bijection, this is also an enumeration of the ASMs. For the square
lattice, this ice point is:

xi = 1 , yi = q , q = e
2�
3 i

Whereas the triangular lattice has ice point:

xi = e
�
3 i , q = e

2�
3 i , p = −e

2�
3 i , r = −1

These values make all of the vertex weights one; however they
result in the following relation for the corner weights:

t1
(

e
�
3 i
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= t2
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e
�
3 i
)

× t3
(

e
�
3 i
)

= t4
(

e
�
3 i
)2

= 1
3

We can, however, remove this effect with a renormalisation, as
valid lattices will have an equal number of t2 corners and t3 corners.

This is because these lattices as a whole are path preserving, where
each node has the same number of 1s going in and out. However
the t2 corner creates a path, as it has a 0 going in and a 1 going
out, while t3 corners destroy a path. Since everything else in the
lattice is path preserving, we must have an equal number of cor-
ners creating paths as we have corners destroying paths. So if we
renormalise Tm by 3

m
2 we will get our desired enumeration.

Schur Polynomials

One way to evaluate our functions is by first expressing them in
terms of Schur polynomials, which form a basis for the set of sym-
metric polynomials in n variables.

Because our partition functions are symmetric, we expect them to
have an expression in these Schur polynomial. Given an integer
partition �, the corresponding Schur polynomial is defined as:

S(�;x1… ,xn) =

det

⎡

⎢

⎢

⎢

⎢

⎣

x�1+n−11 ⋯ x�1+n−1n

x�2+n−21 ⋯ x�2+n−2n
⋮ ⋱ ⋮
x�n1 ⋯ x�nn

⎤

⎥

⎥

⎥

⎥

⎦

∏

1≤i<j≤n(xi−xj)

� is an ordered set of n weakly decreasing positive integers.

To represent our determinant formula as a Schur polynomial we will
first perform the rescaling yi → qxi+m. The motivation behind this
rescaling is that Schur polynomials have a known evaluation when all
variables are sent to 1, which we can exploit at the ice point. From
inspection, it appears that our partition function Zm becomes:

Zm(x1,… ,x2m) =
(1− q)mq

m
2
∏2m

i=1x
1
2
i

(−q)
(m
2
)

∏m
i,j=1xi− q2xj+m

S(�;x1,… ,x2m)

with � = {m−1,m−1,m−2,m−2,… ,1,1,0,0}. We must now show
that this formula satisfies all prior recursion relations, and hence is
equal to the original partition function.

The symmetry, degree and vanishing of this function at xi → 0 is
consistent with the original partition function. Hence, we turn our
attention to specialisation 2.
To show the Zm(x1,… ,x2m)|xi=yj specialisation we first recog-
nise that it is sufficient to show Zm(x1,… ,x2m)|x1=ym =
Zm−1(x2,… ,x2m−1) as we take the symmetry of the function
as given. We examine what happens to the determinant in the
Schur polynomial under this specialisation. Noting that since
q = e

2�
3 i we have that q3 = 1 and thus we perform column operations

to rewrite the determinant as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(qx2m)3m−2 x3m−22 ⋯ x3m−22m−1 x3m−22m
(qx2m)3m−3 x3m−32 ⋯ x3m−32m−1 x3m−32m

⋮ ⋮ ⋱ ⋮ ⋮
(qx2m)4 x42 ⋯ x42m−1 x42m
(qx2m)3 x32 ⋯ x32m−1 x32m
qx2m x2 ⋯ x2m−1 x2m
1 1 ⋯ 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

→

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x3m−22m x3m−22 ⋯ x3m−22m−1 0
0 x3m−32 ⋯ x3m−32m−1 x3m−32m
⋮ ⋮ ⋱ ⋮ ⋮
x42m x42 ⋯ x42m−1 0
0 x32 ⋯ x32m−1 x32m
x2m x2 ⋯ x2m−1 0
0 1 ⋯ 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

We can now make the following observations about our expression.

⦁ It is a polynomial in x2m of degree 6m−5.

⦁ It is 0 if x2m is equal to any of 0, xi, e
2�
3 ixi or e

4�
3 ixi for i ≠ 1,2m.

⦁ We have thus found 6m−5 roots and evaluated our expression
up to a term C(x2,… ,x2m−1) independent of x2m.

We can thus write:

C(x2,… ,x2m−1) =

det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x3m−22m x3m−22 ⋯ x3m−22m−1 0
0 x3m−32 ⋯ x3m−32m−1 x3m−32m
⋮ ⋮ ⋱ ⋮ ⋮
x42m x42 ⋯ x42m−1 0
0 x32 ⋯ x32m−1 x32m
x2m x2 ⋯ x2m−1 0
0 1 ⋯ 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x2m
∏2m−1

i=2 (xi−x2m)(e
2�
3 ixi−x2m)(e

4�
3 ixi−x2m)

Since C(x2,… ,x2m−1) does not depend on x2m we are free to take
x2m → 0. We now perform the following simplifications

⦁ We cofactor expand down the left most column.
⦁ All cofactors vanish apart from the factor of x2m which cancels.
⦁ We cofactor expand down the right most column.
⦁ All cofactors vanish apart from the factor of 1.
⦁ We bring a factor of x3i out of each remaining column which

cancels with our denominator.

Leaving us with:

C(x2,… ,x2m−1) = det

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x3m−52 ⋯ x3m−52m−1
x3m−62 ⋯ x3m−62m−1
⋮ ⋱ ⋮
x42 ⋯ x42m−1
x32 ⋯ x32m−1
x2 ⋯ x2m−1
1 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

which is the same determinant as we begin with but with
m→ m−1 and missing x1 and x2m. Plugging this into our
expression and performing some algebra gives us the exact
specialisation we want, which may be quickly verified .
Now that we know our Schur polynomial formula is valid, we can
evaluate it at (x1,… ,x2m) = (1,… ,1). We use the following known
evaluation for Schur polynomials:

S(�;1,… ,1) =
∏

1≤i<j≤n

�i−�j + j− i
j− i

.

Using this as well as our value for q and then simplifying leaves us
with the following evaluation for the number of m×m ASMs:

Zm(1,… ,1) =
(3
4

)

(m
2
) m
∏

i,j=1

3(j− i)+1
2(j− i)+1

However when we move our attention to the triangular lattice, Tm,
we find that this method is not nearly as effective. Unlike the
square lattice, the partition function for the triangular lattice is
not a single Schur polynomial and is instead a complicated linear
combination of Schur polynomials. Determining this is beyond the
scope of this project.

Factor Exhaustion

Another way we can evaluate our partition function is using the
method of factor exhaustion, which involves determining something
known to be a polynomial by finding all of its factors. We define the
Matrix

M(x,y) =

(

y
1
2 (m+j−i)−y−

1
2 (m+j−i)

x
1
2 (m+j−i)−x−

1
2 (m+j−i)

)

1≤i,j≤m

We observe that the expansion of detM(x,y) as a function of y
consists of a sum of monomials with either all irreducible half powers,
if m is odd, or all whole powers if n is even. Thus the following
expression will be a polynomial in the variable y of degree m2:

y
m2
2 detM(x,y)

We now observe what happens when we send y→ xk with 0≤ k <m.
We notice the identity via telescoping :

x
k
2 (m+j−i)−x−

k
2 (m+j−i)

x
1
2 (m+j−i)−x−

1
2 (m+j−i)

=
k−1
∑

l=1−k
steps of 2

x
l
2 (m+j−i)

Using this identity we can decompose our matrix into a sum of
matrices:

M(xk,x) =
k−1
∑

l=1−k
steps of 2

(

x
l
2 (m+j−i)

)

1≤i,j≤m

We see that each of these k sub matrices have rank 1. It follows
that the rank of M(xk,x)≤ k, thus detM(xk,x) = 0 for all 0≤ k < m.

We can then conclude that our previously mentioned polynomial
has roots at y = xk of multiplicity at least m−k. A similar
argument can be made for y = x−k. This gives us the m2 roots,
which means we have now defined the polynomial up to a factor
C(x), independent of y. To determine this we note the following
equation:

C(x) =
y
m2
2 detM(x,y)

∏m
i,j=1(xi−j −y)

Since C(x) is not dependent on y we consider what happens as
y→∞. With some limit arguments and some rearranging we can
show that:

C(x) = (−1)m
2
x−

m(m+1)
2 det

[

1

x
1
2 (m−2i)−x−

1
2 (m+2j)

]

1≤i,j≤m

This can be evaluated as a special case of the following identity
where xi = x

1
2 (m−2i) and yj = x−

1
2 (m+2j):

det
[

1
xi−yj

]

1≤i,j≤m
=

∏

1≤i<j≤m(xi−xj)(yj −yi)
∏m

i,j=1xi−yj

Which can be proven using factor exhaustion and is omitted for
brevity. Putting this all together we get the following identity:

detM(x,y) = (−1)
m
2 (5m+1)

∏m
i,j=1(x

i−j −y)
∏m

i,j=1
i≠j

(xi−xj)

y
m2
2 x

m
2 (2m

2+m−1)∏n
i,j=1x

1
2 (m−2i)−x−

1
2 (m+2j)

We now wish to apply this identity to the partition function Zm.
We begin by considering the specialisations xi → xi and yi → qxm+i.
Recalling that q = e

2�
3 i ,the determinant of our partition function

becomes:
[

1
(xi− qxj+m)(xi− q2xj+m)

]

1≤i,j≤m
→

[

1
x2i+xj+m+i+x2(j+m)

]

1≤i,j≤m

We now observe the following relation by telescoping:

x2i+xj+m+i+x2(j+m) = x3(j+m)−x3i

xj+m−xi
= xj+m+i× x

3(j+m−i)
2 −x−

3(j+m−i)
2

x
j+m−i

2 −x−
j+m−i

2

Plugging this in, pulling a factor of x−i out of each row and x−j−m
out of each column and then simplifying gives us:

m
∏

i=1
x−2i−m det

[

x
j+m−i

2 −x−
j+m−i

2

x
3(j+m−i)

2 −x−
3(j+m−i)

2

]

1≤i,j≤m

We recognise that the inside of our determinant is equivalent to
M(x3,x). We can thus apply our identity from earlier and plug this
into Zm. We then use L’Hopital’s rule to take x→ 1 leaving us
with the following expression for the number of m×m ASMs after
some simplification:

Zm(1,… ,1) = (−3)
(m
2
)

m
∏

i,j=1

3(j− i)+1
m+ j− i

Which is equivalent to our earlier expression.
Sadly applying this method to Tm is much harder as the function
inside the Pfaffian is significantly more complicated then the
function inside the determinant of Zm.

Conclusion

In the pursuit of evaluating Zm we have learnt about two techniques
that see wide use in the study of integrable models. We have seen
how useful they can be in transforming an equation which takes a
complicated form into one far more simple and easily computable at
a point of interest. However we have also encountered the greater
problem of evaluating Tm, which remains an open problem to this
day as it seems impervious to the methods currently known. So
there is still plenty of room for these methods to be extended and
for new methods to be created in the pursuit of evaluating even more
complex functions!
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What Really Counts

For the curious reader here are the first few numbers in the enu-
meration of m×m ASMs:

1 ,1 ,2 ,7 ,42 ,429 ,7436 ,218348 ,10850216 ,911835460 ,
129534272700 ,31095744852375 ,12611311859677500 ,…

apetrowski@student.unimelb.edu.au arnicoll@student.unimelb.edu.au


