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Background

How do you connect a collection of cities using the least amount of road
as possible? This optimisation problem is the Euclidean Steiner tree
problem, and the solution involves the use of ‘intersections’, or Steiner
points. In a minimal network

• All Steiner points have degree 3, with edges (‘roads’) meeting at 120°
• Terminals (‘cities’) have degree at most 3
• There are no cycles, and
• There are at most n− 2 Steiner points for an n terminal network

A shortest tree for points on the vertices of a square is shown in Fig. 1.

There is an algorithm known as GeoSteiner which is able to solve this
problem efficiently, taking advantage of geometric properties of the mini-
mal trees to cut down on the work required [2]. It

• Grows potential components of the final solution
• Excludes non-minimal components for efficiency
• Connects the terminals using components to minimise total length

Minimal square networks

Fig. 1: Undirected Fig. 2: Directed Fig. 3: Directed, terminal swap

Directed Steiner networks

A variation of the Euclidean Steiner tree problem is the directed problem,
in which the terminals are classified as sources or sinks, and every source
must have a directed path to every sink. Whilst some minimal directed
networks are similar to undirected equivalents, others differ (see Fig. 2
and Fig. 3). In these minimal networks,

• Steiner points can have degree 3, 4, 5, or 6 [3]
• Cycles may be present, including cycles of Steiner points [1]
• There are at most 52n Steiner points, for an n terminal network [1]
• There is no known algorithm for their construction

We have worked to determine what must be done to develop such an
algorithm.

Location of Steiner points

An important part of finding a minimal network will be a procedure to
find the location of Steiner points given a topology – some terminals,
some number of Steiner points, and their connections.

• The Melzak-Hwang algorithm [2] is used in the undirected case
• It can be adapted for many directed cases
• A notable exception: networks with a cycle of degree 3 Steiner points
• Some degree 3 Steiner cycles can be ignored, as they can be ex-

panded/contracted and removed (see Fig. 7)
• Not all degree 3 Steiner cycles share this property

Degree 3 Steiner cycle geometry

We wish to know when the problematic cycles can be ignored, and if we
can precisely locate the Steiner points of the remainder. Thus we analyse
the geometry of these cycles, based on the points around them. We find

• External points restrict the location of the Steiner points (Fig. 4)
• Steiner point geometry forces the angles at p1 and p2 to remain fixed
• The upper outer arc is p1 as θ varies from 0° to 120° (Fig. 5)
• The upper inner arc is p2 as α varies from 0° to 60° (Fig. 6)

For all θ and α in those ranges, the Steiner points have a range of possible
locations: up and down the equilateral triangle in Fig. 5, and along the
rectangle in Fig. 6. Intersections of the restrictive regions around a cycle
will indicate the location of Steiner points, and will be researched further.
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Fig. 6: External points on alternate sides of cycle

Flexible Steiner cycle

Fig. 7: Equal length networks, obtained by expanding/contracting the degree 3 Steiner cycle (black).

The degree 3 Steiner cycle degenerates at the extremes, leaving behind a favourable cycle for an

adaptation of the Melzak-Hwang algorithm
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