
Naïve smooth relaxation friendly Turing machines

Adrian K. Xu, supervised by Daniel Murfet

Turing machines

Alternative design for universal Turing machine

The same ideas can be used to construct a universal Turing machine which is smooth relaxation preserving in the sense of  

Definition B. The resultant update rules when running codes with uncertainty are an (arguably) natural generalisation of  

those for the smooth relaxation of  classical codes, with the transition function yielding the probabilistic extension Δ𝛿: Σ ×
𝑄 → ΔΣ × Δ𝑄 × Δ{𝐿, 𝑆, 𝑅}. 
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Definition B (Smooth rel. preserving simulation). Extend the alphabets in the above to 

their standard simplexes. The halt criterion for 𝐺𝐸𝑇𝑖 and 𝐼𝑁𝐼𝑇 needs modification.

It is a quirk of  our particular choice of  smooth relaxation that machines which halt do not 

necessarily have convergent smooth relaxations. In general, given a machine with 

associated smooth functions ΔFt: ΔΣ⊔
ℤ → ΔΣ⊔

ℤ ,  one can define Δ𝐹: ΔΣ⊔
ℤ → ΔΣ⊔

ℤ sending

𝑥 ⟼ lim
𝑡→∞

ΔFt (𝑥)

where the limit receives some sensible definition. This notion of  stability is a stronger 

criteria than the requirement that the machine halt in the classical sense, and we use it to 

amend the definitions of  𝐹𝐺𝐸𝑇𝑖 and 𝐹𝐼𝑁𝐼𝑇 in the smooth case.

Our definition yields the following commutative diagram:

Definition A (Simulation). 𝑆𝐼𝑀 is said to simulate 𝑀𝑈𝐿𝑇𝐼 iff  there exists a simulation timer 

𝑇𝑆𝐼𝑀: ℤ≥0 → ℤ≥0, TMs 𝐺𝐸𝑇𝑖 𝑖=1
𝑛 and 𝐼𝑁𝐼𝑇 with associated partial functions ൛

ൟ

𝐹𝐺𝐸𝑇𝑖: Σ𝑆𝐼𝑀 ⊔
ℤ ↪

Σ𝑆𝐼𝑀 ⊔
ℤ

𝑖=1

𝑛
and 𝐹𝐼𝑁𝐼𝑇: Σ𝑆𝐼𝑀 ⊔

ℤ ↪ Σ𝑆𝐼𝑀 ⊔
ℤ defined whenever they halt, such that:

1. 𝑥𝑆𝐼𝑀 ≔ 𝐹𝐼𝑁𝐼𝑇(𝑥) is defined for all 𝑥 ∈ Σ⊔
ℤ , and for all such 𝑥𝑆𝐼𝑀, 𝐹𝐺𝐸𝑇𝑖 is defined on 

𝐹𝑆𝐼𝑀
𝑇𝑆𝐼𝑀 𝑡

(𝑥𝑆𝐼𝑀) and maps into Σ⊔
ℤ for 𝑖 = 1,… , 𝑛 and 𝑡 ≥ 0

2. 𝐹𝐺𝐸𝑇𝑖 𝐹𝑆𝐼𝑀
𝑇𝑆𝐼𝑀 𝑡

𝐹𝐼𝑁𝐼𝑇 𝑥 = Π𝑖𝐹𝑀𝑈𝐿𝑇𝐼
𝑡 (𝑥) for 𝑖 = 1,… , 𝑛 and 𝑡 ∈ ℤ≥0

Theorem: For every machine 𝑀𝑈𝐿𝑇𝐼, there indeed exists a machine 𝑆𝐼𝑀 as in Definition B.

Dear Theorem,

Lest you have an existential crisis, be reminded that you are (beyond the opening remarks) what Dan, my 

supervisor, (generously, and to whom I owe immense gratitude) likened to the “virtuosity”  of  a super Mario 

speed run.

That is, you are among the many things in math, life and beyond which can and should be done simply for the hell 

of  it.

Regards,

Your Maker

In a classical TM, the tape head reads the current symbol, writes a symbol to the tape and moves either left or right (or 

stays in some definitions). In a smooth TM, one should imagine the tape (with the new symbol written) being duplicated 

twice, one copy shifted left and the other copy shifted right. The resultant tape configuration is the superposition of  the 

three copies, weighted according to the uncertainty in the symbol that was read (propagating to uncertainty in the move 

direction).

𝜎0 𝜎1 𝜎2𝜎−1𝜎−2

𝜎1 𝜎2 𝜎3𝜎0𝜎−1

𝜎−1 𝜎0 𝜎1𝜎−2𝜎−3

duplicate 1 (move right, shift left)

duplicate 2 (move left, shift right)

Loading uncertainties into state

Suppose we have a sequence of  𝑛 adjacent symbols with uncertainty, their distributions given as vectors in the standard 

Σ-simplex, 𝑠𝑖 = σ𝜎∈Σ𝑝𝑖(𝜎) ⋅ 𝜎 where 𝑝𝑖(𝜎) is the probability the 𝑖-th symbol reads 𝜎. We want to write in the next tape 

entry over some function of  this sequence, 𝑓(𝜎1, … , 𝜎𝑛). One can think of  the probabilistic extension of  this function as a 

linear map 

Δ𝑓: ΔΣ𝑛 ⊂ ℝΣ⊗⋯⊗ℝΣ → ΔΣ
sending the basis vectors in the tensor product to the corresponding basis vectors in the destination space. The input 

vector can be “loaded” into the state of  the TM via the following construction; the opening wedges correspond to tensor 

product operations to obtain the desired input distribution, and the final write instruction corresponds to the application 

of  the above map. Note the final wedge closes all of  the opening wedges. (That is, all the nested paths converge.)

superposition weighted 

according to uncertainty of  𝜎0

𝜎𝑖 → 𝜎𝑖 , 𝑅

𝑖 = 1,… , 𝑛

_→ 𝑓( റ𝜎), 𝑆

Handling conditional uncertainties

Now suppose that we have 𝑛 + 1 adjacent symbols, where the first symbol 𝑠0 = σ𝑘=1
𝑛 𝑝0(𝜎0

𝑘) ⋅ 𝜎0
𝑘 is a distribution over 𝑛

possible symbols, say Σ0 = {𝜎0
1, … , 𝜎0

𝑛} ⊂ Σ, and the next 𝑛 symbols are to be thought of  as distributions conditioned on the 

value of  the first symbol. 𝑓 is now a two input function, the distribution of  the second input being conditioned on the first. 

The input distribution to Δ𝑓 is no longer computed via iterated tensor products; we must map each basis vector of  ℝΣ0
individually to Δ(Σ0 × Σ) according to 𝜎 ↦ 𝜎⊗ 𝑠𝑖 = σ𝜎′∈Σ𝑝𝑖(𝜎′) ⋅ (𝜎 ⊗ 𝜎′). 
The following construction achieves this. Here we prefix a transition to refer to a particular state path. It is this kind of  

construction that is used to achieve the superposition operation described above, whilst circumventing the problems 

associated with tape head movement ambiguity. After the initial opening wedge, each subsequent wedge corresponds to the 

bifurcation of  a particular path and equivalently to an application of  the map just described.

𝜎𝑖 → 𝜎𝑖 , 𝑅

𝑖 = 1,… , 𝑛

𝜎0 → 𝜎0, 𝑅
𝜎0 = 𝜎0

𝑖 :
_→ 𝑓(𝜎0, 𝜎𝑖), 𝑅𝜎0 = 𝜎0

𝑖 :

Notes on the actual construction

The actual construction employs the above patterns extensively. As is often done in the classical case, the representations 

of  the simulated tapes are interleaved on the single tape; however, an extra interleaved sequence is added, to store the 

current simulated state, and write the next state, write symbols and move directions. The simulated tape representations 

are spaced out with blank entries on either side of  each symbol to allow the two duplicates described above to be “staged” 

before the technique described just above is used to compute the superposition.
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𝑅𝑒𝑙𝑠𝑒:

Of  course, the classical case of  Definition A is well known to many a theoretical computer science student. On the other 

hand, the smooth relaxation case of  Definition B is novel. The question of  its existence arose a couple weeks back from the 

time of  writing in discussions with the authors of  [CM19]. A working construction must surmount the following apparent 

engineering hurdle: that any such simulator must never have ambiguity in the direction the tape head moves. Why? Read 

on.

In [CM19], Clift and Murfet arrive at a notion of  the “derivative of  a Turing machine (TM)”, built 

on work surrounding Jean-Yves Girard’s linear logic, and emerging from which is the idea of  a smooth 

Turing machine. 

𝜎0 𝜎1 𝜎2𝜎−1𝜎−2

𝑞

Let 𝑆𝐼𝑀 be a single tape with alphabet Σ𝑆𝐼𝑀 , associated functions 𝐹𝑆𝐼𝑀
𝑡 , 𝑀𝑈𝐿𝑇𝐼 an 𝑛-tape TM with states 𝑄, alphabet Σ, 

associated functions 𝐹𝑀𝑈𝐿𝑇𝐼
𝑡 .

For simplicity, we assume Σ𝑆𝐼𝑀 contains 𝑄 and Σ.

Recall: the TM model comprises an infinite tape with alphabet Σ, and a tape head with state in 𝑄. In each transition, 

the tape head reads the current symbol, write a new symbol, updates its state and moves left, right, or stays put, as 

specified by the transition function 𝛿: Σ × 𝑄 → Σ × 𝑄 × {𝐿, 𝑆, 𝑅}. 
We restrict the space of  classical tape configurations, Σ⊔

ℤ , to those containing a finite number of  non-zero entries, 

and encode the tape head position via the index shift.

Every TM computes a function 𝐹𝑡: Σ⊔
ℤ → Σ⊔

ℤ by running for 𝑡-steps, and a partial function 𝐹: Σ⊔
ℤ ↪ Σ⊔

ℤ defined for 

inputs on which it halts (reaches an idle state).

A smooth relaxation is obtained by allowing uncertainties in the input (therefore output) and propagating the uncertainty in 

some way to obtain a smooth function Δ𝐹: (ΔΣ)⊔
ℤ↪ (ΔΣ)⊔

ℤ , where ΔΣ is the set of  probability distributions over Σ, or, 

geometrically, the standard Σ-simplex, σ𝝈∈Σ𝛼𝜎 ⋅ 𝝈 𝛼𝜎 ∈ ℝ≥0, σ 𝛼𝜎 = 1 } ⊂ ℝΣ.

Intuitively, we may identify the derivative with the ratio between output and input uncertainty; however, standard 

probability does not work here, as the output uncertainty would be dependent only on the function 𝐹 and not on the internal 

design of  the machine.

Instead, we propagate the uncertainty with the assumption that, after each transition, the machine state, each tape entry, the 

tape head movement direction and write symbol are all independent random variables—this we call the naïve Bayesian 

observer, and leads to the naïve smooth relaxation of  a Turing machine to which we refer in what follows.

Smooth relaxation

Motivation

The modern arsenal of differential methods in modern machine learning relies on equipping the space of  models with a 

smooth manifold structure. In order to port these methods to the general problem of  program synthesis, we must endow 

the entire space of  computable functions with such a structure; [CM19] and [CMW21] are key steps towards this vision. 

However, if the (naïve Bayesian) smooth Turing machine is to be thought of  as a notion fundamental to the theory of  

computation, then one would expect it to be independent of  the particular model of  computation adopted. In particular, 

constructions given on multi-tape machines (which, for convenience, they often are) in contexts where properties of  the 

smooth relaxation are of  interest, should admit equivalent constructions on single tape machines which respect those 

properties. Similarly, smooth universal Turing machines (which simulate any other TM given a suitable encoding) should 

propagate uncertainty through their simulations in a manner equivalent to that of  the simulated machines. It is this issue 

that we proceed to clarify and verify.

Formalities

It is convenient to introduce some syntactic sugar for notating collections of  state paths bifurcating from a shared 

source state and converging at a shared target state, parametrised by the write symbol 𝛼 of  the opening wedge. The 

transitions appearing on and between the wedges are understood to be cloned, one path for each value of  the parameter, 

with all appearances of  the parameter in the transitions replaced with its value for that path.

𝛼 → ⋅,⋅

Moreover, we notate transitions that appear in a fixed number of  (possibly parametrised) sequential repeats via:

The reason the usual constructions fail to be smooth relaxation preserving is because the effect of  this superposition is 

essentially to “smudge” every entry on the tape—when the simulation is all on one tape, this means ambiguity in one 

simulated tape will “contaminate” all the other simulated tapes.

To give a full working construction is involved and at times tedious, so here we merely illustrate a couple of  the key 

ingredients.

𝑖 = 1,… , 𝑛

⋅ → ⋅,⋅
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