
Naïve smooth relaxation friendly Turing machines

Adrian K. Xu, supervised by Daniel Murfet

Turing machines

Alternative design for universal Turing machine

The same ideas can be used to construct a universal Turing machine which is smooth relaxation preserving in the sense of

Definition B. The resultant update rules when running codes with uncertainty are an (arguably) natural generalisation of

those for the smooth relaxation of classical codes, with the transition function yielding the probabilistic extension Δ𝛿: Σ ×
𝑄 → ΔΣ × Δ𝑄 × Δ{𝐿, 𝑆, 𝑅}.

ΔΣ ⊔
ℤ 𝑛

ΔΣ ⊔
ℤ 𝑛

ΔΣ𝑆𝐼𝑀 ⊔
ℤ

ΔΣ𝑆𝐼𝑀 ⊔
ℤ

ΔΣ ⊔
ℤ

𝐹𝐼𝑁𝐼𝑇

𝐹𝐺𝐸𝑇𝑖

𝐹𝑆𝐼𝑀
𝑇𝑆𝐼𝑀 𝑡 𝐹𝑀𝑈𝐿𝑇𝐼

𝑡

Π𝑖

Definition B (Smooth rel. preserving simulation). Extend the alphabets in the above to

their standard simplexes. The halt criterion for 𝐺𝐸𝑇𝑖 and 𝐼𝑁𝐼𝑇 needs modification.

It is a quirk of our particular choice of smooth relaxation that machines which halt do not

necessarily have convergent smooth relaxations. In general, given a machine with

associated smooth functions ΔFt: ΔΣ⊔
ℤ → ΔΣ⊔

ℤ , one can define Δ𝐹: ΔΣ⊔
ℤ → ΔΣ⊔

ℤ sending

𝑥 ⟼ lim
𝑡→∞

ΔFt (𝑥)

where the limit receives some sensible definition. This notion of stability is a stronger

criteria than the requirement that the machine halt in the classical sense, and we use it to

amend the definitions of 𝐹𝐺𝐸𝑇𝑖 and 𝐹𝐼𝑁𝐼𝑇 in the smooth case.

Our definition yields the following commutative diagram:

Definition A (Simulation). 𝑆𝐼𝑀 is said to simulate 𝑀𝑈𝐿𝑇𝐼 iff there exists a simulation timer

𝑇𝑆𝐼𝑀: ℤ≥0 → ℤ≥0, TMs 𝐺𝐸𝑇𝑖 𝑖=1
𝑛 and 𝐼𝑁𝐼𝑇 with associated partial functions ൛

ൟ

𝐹𝐺𝐸𝑇𝑖: Σ𝑆𝐼𝑀 ⊔
ℤ ↪

Σ𝑆𝐼𝑀 ⊔
ℤ

𝑖=1

𝑛
and 𝐹𝐼𝑁𝐼𝑇: Σ𝑆𝐼𝑀 ⊔

ℤ ↪ Σ𝑆𝐼𝑀 ⊔
ℤ defined whenever they halt, such that:

1. 𝑥𝑆𝐼𝑀 ≔ 𝐹𝐼𝑁𝐼𝑇(𝑥) is defined for all 𝑥 ∈ Σ⊔
ℤ , and for all such 𝑥𝑆𝐼𝑀, 𝐹𝐺𝐸𝑇𝑖 is defined on

𝐹𝑆𝐼𝑀
𝑇𝑆𝐼𝑀 𝑡

(𝑥𝑆𝐼𝑀) and maps into Σ⊔
ℤ for 𝑖 = 1,… , 𝑛 and 𝑡 ≥ 0

2. 𝐹𝐺𝐸𝑇𝑖 𝐹𝑆𝐼𝑀
𝑇𝑆𝐼𝑀 𝑡

𝐹𝐼𝑁𝐼𝑇 𝑥 = Π𝑖𝐹𝑀𝑈𝐿𝑇𝐼
𝑡 (𝑥) for 𝑖 = 1,… , 𝑛 and 𝑡 ∈ ℤ≥0

Theorem: For every machine 𝑀𝑈𝐿𝑇𝐼, there indeed exists a machine 𝑆𝐼𝑀 as in Definition B.

Dear Theorem,

Lest you have an existential crisis, be reminded that you are (beyond the opening remarks) what Dan, my

supervisor, (generously, and to whom I owe immense gratitude) likened to the “virtuosity” of a super Mario

speed run.

That is, you are among the many things in math, life and beyond which can and should be done simply for the hell

of it.

Regards,

Your Maker

In a classical TM, the tape head reads the current symbol, writes a symbol to the tape and moves either left or right (or

stays in some definitions). In a smooth TM, one should imagine the tape (with the new symbol written) being duplicated

twice, one copy shifted left and the other copy shifted right. The resultant tape configuration is the superposition of the

three copies, weighted according to the uncertainty in the symbol that was read (propagating to uncertainty in the move

direction).

𝜎0 𝜎1 𝜎2𝜎−1𝜎−2

𝜎1 𝜎2 𝜎3𝜎0𝜎−1

𝜎−1 𝜎0 𝜎1𝜎−2𝜎−3

duplicate 1 (move right, shift left)

duplicate 2 (move left, shift right)

Loading uncertainties into state

Suppose we have a sequence of 𝑛 adjacent symbols with uncertainty, their distributions given as vectors in the standard

Σ-simplex, 𝑠𝑖 = σ𝜎∈Σ𝑝𝑖(𝜎) ⋅ 𝜎 where 𝑝𝑖(𝜎) is the probability the 𝑖-th symbol reads 𝜎. We want to write in the next tape

entry over some function of this sequence, 𝑓(𝜎1, … , 𝜎𝑛). One can think of the probabilistic extension of this function as a

linear map

Δ𝑓: ΔΣ𝑛 ⊂ ℝΣ⊗⋯⊗ℝΣ → ΔΣ
sending the basis vectors in the tensor product to the corresponding basis vectors in the destination space. The input

vector can be “loaded” into the state of the TM via the following construction; the opening wedges correspond to tensor

product operations to obtain the desired input distribution, and the final write instruction corresponds to the application

of the above map. Note the final wedge closes all of the opening wedges. (That is, all the nested paths converge.)

superposition weighted

according to uncertainty of 𝜎0

𝜎𝑖 → 𝜎𝑖 , 𝑅

𝑖 = 1,… , 𝑛

_→ 𝑓(റ𝜎), 𝑆

Handling conditional uncertainties

Now suppose that we have 𝑛 + 1 adjacent symbols, where the first symbol 𝑠0 = σ𝑘=1
𝑛 𝑝0(𝜎0

𝑘) ⋅ 𝜎0
𝑘 is a distribution over 𝑛

possible symbols, say Σ0 = {𝜎0
1, … , 𝜎0

𝑛} ⊂ Σ, and the next 𝑛 symbols are to be thought of as distributions conditioned on the

value of the first symbol. 𝑓 is now a two input function, the distribution of the second input being conditioned on the first.

The input distribution to Δ𝑓 is no longer computed via iterated tensor products; we must map each basis vector of ℝΣ0
individually to Δ(Σ0 × Σ) according to 𝜎 ↦ 𝜎⊗ 𝑠𝑖 = σ𝜎′∈Σ𝑝𝑖(𝜎′) ⋅ (𝜎 ⊗ 𝜎′).
The following construction achieves this. Here we prefix a transition to refer to a particular state path. It is this kind of

construction that is used to achieve the superposition operation described above, whilst circumventing the problems

associated with tape head movement ambiguity. After the initial opening wedge, each subsequent wedge corresponds to the

bifurcation of a particular path and equivalently to an application of the map just described.

𝜎𝑖 → 𝜎𝑖 , 𝑅

𝑖 = 1,… , 𝑛

𝜎0 → 𝜎0, 𝑅
𝜎0 = 𝜎0

𝑖 :
_→ 𝑓(𝜎0, 𝜎𝑖), 𝑅𝜎0 = 𝜎0

𝑖 :

Notes on the actual construction

The actual construction employs the above patterns extensively. As is often done in the classical case, the representations

of the simulated tapes are interleaved on the single tape; however, an extra interleaved sequence is added, to store the

current simulated state, and write the next state, write symbols and move directions. The simulated tape representations

are spaced out with blank entries on either side of each symbol to allow the two duplicates described above to be “staged”

before the technique described just above is used to compute the superposition.

January 2021

𝑅𝑒𝑙𝑠𝑒:

Of course, the classical case of Definition A is well known to many a theoretical computer science student. On the other

hand, the smooth relaxation case of Definition B is novel. The question of its existence arose a couple weeks back from the

time of writing in discussions with the authors of [CM19]. A working construction must surmount the following apparent

engineering hurdle: that any such simulator must never have ambiguity in the direction the tape head moves. Why? Read

on.

In [CM19], Clift and Murfet arrive at a notion of the “derivative of a Turing machine (TM)”, built

on work surrounding Jean-Yves Girard’s linear logic, and emerging from which is the idea of a smooth

Turing machine.

𝜎0 𝜎1 𝜎2𝜎−1𝜎−2

𝑞

Let 𝑆𝐼𝑀 be a single tape with alphabet Σ𝑆𝐼𝑀 , associated functions 𝐹𝑆𝐼𝑀
𝑡 , 𝑀𝑈𝐿𝑇𝐼 an 𝑛-tape TM with states 𝑄, alphabet Σ,

associated functions 𝐹𝑀𝑈𝐿𝑇𝐼
𝑡 .

For simplicity, we assume Σ𝑆𝐼𝑀 contains 𝑄 and Σ.

Recall: the TM model comprises an infinite tape with alphabet Σ, and a tape head with state in 𝑄. In each transition,

the tape head reads the current symbol, write a new symbol, updates its state and moves left, right, or stays put, as

specified by the transition function 𝛿: Σ × 𝑄 → Σ × 𝑄 × {𝐿, 𝑆, 𝑅}.
We restrict the space of classical tape configurations, Σ⊔

ℤ , to those containing a finite number of non-zero entries,

and encode the tape head position via the index shift.

Every TM computes a function 𝐹𝑡: Σ⊔
ℤ → Σ⊔

ℤ by running for 𝑡-steps, and a partial function 𝐹: Σ⊔
ℤ ↪ Σ⊔

ℤ defined for

inputs on which it halts (reaches an idle state).

A smooth relaxation is obtained by allowing uncertainties in the input (therefore output) and propagating the uncertainty in

some way to obtain a smooth function Δ𝐹: (ΔΣ)⊔
ℤ↪ (ΔΣ)⊔

ℤ , where ΔΣ is the set of probability distributions over Σ, or,

geometrically, the standard Σ-simplex, σ𝝈∈Σ𝛼𝜎 ⋅ 𝝈 𝛼𝜎 ∈ ℝ≥0, σ 𝛼𝜎 = 1 } ⊂ ℝΣ.

Intuitively, we may identify the derivative with the ratio between output and input uncertainty; however, standard

probability does not work here, as the output uncertainty would be dependent only on the function 𝐹 and not on the internal

design of the machine.

Instead, we propagate the uncertainty with the assumption that, after each transition, the machine state, each tape entry, the

tape head movement direction and write symbol are all independent random variables—this we call the naïve Bayesian

observer, and leads to the naïve smooth relaxation of a Turing machine to which we refer in what follows.

Smooth relaxation

Motivation

The modern arsenal of differential methods in modern machine learning relies on equipping the space of models with a

smooth manifold structure. In order to port these methods to the general problem of program synthesis, we must endow

the entire space of computable functions with such a structure; [CM19] and [CMW21] are key steps towards this vision.

However, if the (naïve Bayesian) smooth Turing machine is to be thought of as a notion fundamental to the theory of

computation, then one would expect it to be independent of the particular model of computation adopted. In particular,

constructions given on multi-tape machines (which, for convenience, they often are) in contexts where properties of the

smooth relaxation are of interest, should admit equivalent constructions on single tape machines which respect those

properties. Similarly, smooth universal Turing machines (which simulate any other TM given a suitable encoding) should

propagate uncertainty through their simulations in a manner equivalent to that of the simulated machines. It is this issue

that we proceed to clarify and verify.

Formalities

It is convenient to introduce some syntactic sugar for notating collections of state paths bifurcating from a shared

source state and converging at a shared target state, parametrised by the write symbol 𝛼 of the opening wedge. The

transitions appearing on and between the wedges are understood to be cloned, one path for each value of the parameter,

with all appearances of the parameter in the transitions replaced with its value for that path.

𝛼 → ⋅,⋅

Moreover, we notate transitions that appear in a fixed number of (possibly parametrised) sequential repeats via:

The reason the usual constructions fail to be smooth relaxation preserving is because the effect of this superposition is

essentially to “smudge” every entry on the tape—when the simulation is all on one tape, this means ambiguity in one

simulated tape will “contaminate” all the other simulated tapes.

To give a full working construction is involved and at times tedious, so here we merely illustrate a couple of the key

ingredients.

𝑖 = 1,… , 𝑛

⋅ → ⋅,⋅

References

[CM19] James Clift and Daniel Murfet. Derivatives of Turing machines in Linear Logic. 2019.

[CMW21] James Clift, Daniel Murfet and James Wallbridge. Geometry of Program Synthesis. 2021.

