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The Variable Selection Problem

Variable selection is a critical step in statistical inference. It directly relates to the goodness and utility
of statistical models, which is the base of effective inference. However, when the number of candidate
variables is large, it is not computationally feasible to use exhaustive search. (e.g. When number of
candidate variables = 50, exhaustive search would have to consider 250 candidate models.) To solve
this variable selection problem involving a large number of candidates, we referred to the method
proposed by Qian and Field (2002). The key idea of the method is using random sampling to obtain
a sample of the candidate models (which is expected to be much smaller than the population), then
choose the sample best model as the estimate of the true best model. In this poster, we mainly focus
on testing the effectiveness of one version of this method on logistic regression model selection. We
would use BIC as the model selection criteria and Gibbs Sampling to obtain the sample of candidate
models. We would also consider the possible over- or under-dispersion of the data.

Logistic Regression Model

Suppose a response variable Y follows a binomial distribution B(m,π), and the probability π may
be influenced by p explanatory variables x1, . . . , xp. Then we can model the relation as a logistic
regression model:

log
π

1− π
= β0 + xtβ (1)

where xt = (x1, . . . , xp), β = (β1, . . . , βp)
t. Variable selection in this case is to select a best subset

of variables xt
α ⊆ xt, where α ∈ {0, 1}p is an indicator vector denoting which variables to include in

xt
α. Then, the model based on xt

α should be:

log
π

1− π
= β0 + xt

αβα (2)

where βα ⊆ β. It is easy to see that each candidate model can be represented by a unique indicator
vector α. Then, we can represent the set of all candidate models as A = {0, 1}p.

The Dispersion Parameter

In real-world, the response variable Y may not exactly follow the assumed binomial distribution
B(m,π). Specifically, Y may be over- or under-dispersed. In this case, we say that Y follows a
quasi-binomial distribution, with

E(Y ) = mπ, Var(Y ) = ϕmπ(1− π)

where ϕ is the dispersion parameter (McCullagh & Nelder, 1989). Note that ϕ actually characterises
the distance between the true distribution of Y and the assumed distribution B(m,π). The closer ϕ
is to 1, the closer Y will be to B(m,π) in distribution, which actually indicates a better model fit.

Model Selection Criteria - BIC

The Bayesian Information Criteria (BIC) proposed by Schwarz (1978) is commonly used to access
model utility. In the case of our logistic regression models, we would like to adjust the original BIC
with the estimated dispersion parameter ϕ̂, and use the adjusted BIC in the following form:

BIC(α|Y,xα) = −ℓ(Y,xα|α) +
1

2
(1 + |ϕ̂− 1|)pα logN (3)

where ℓ(Y,xα|α) is the maximized log-likelihood function; (1 + |ϕ̂− 1|) is the adjust scale; pα is the
number of parameters in model α; and N is the total number of observations from (Y,xα). We would
consider the model α∗ ∈ A with the smallest BIC(α∗|Y,xα∗) as the best candidate model.

Random Search by Gibbs Sampling

Referring to Qian and Field (2002), we define the following probability distribution for model α on A
with

P (α) = B exp{−BIC(α|Y,xα)} (4)

where B = (
∑

α∈A exp{−BIC(α|Y,xα})−1. By this definition, the best model α∗ would have the
highest probability P (α∗). Therefore, if we generate a random sample based on this probability
distribution, it is highly likely that α∗ will appear in the sample and it will appear early. In this case,
to find the best model, we only need to search the moderate size sample, rather than doing the
computationally infeasible exhaustive search.

At this stage, the key is to find a way to generate random samples. Though we cannot directly
compute the constant B, we can still find the following conditional distribution:

P (αi|α1, α2, ..., αi−1, αi+1, ..., αp) =
P (α)

P (α, αi = 0) + P (α, αi = 1)
(5)

where αi denotes the i-th term of the indicator vector α. We can see that this is a Bernoulli distribu-
tion.

Therefore, we can use Gibbs sampling (Casella & George, 1992) to generate a random sample of
candidate models, with sample size = K, as the following steps:

1. Choose a random starting model, represented by indicator vector α(0). (e.g. α(0) = (1, 1, ..., 1),
a 1× p indicator vector.)

2. Repeat for j = 1, 2, ..., K: generate model α(j), where α
(j)
i (i.e. the i-th term of α(j)) is gener-

ated from the Bernoulli distribution:

P (αi|α
(j)
1 , α

(j)
2 , ..., α

(j)
i−1, α

(j−1)
i+1 , ..., α

(j−1)
p ), i = 1, 2, ..., p

3. Return the generated sequence of models {α(1),α(2), ...,α(K)}.

This generated sequence is actually a Markov chain, with chain-size = K. Normally, if a Markov chain
is ergodic, it will become stationary and can be used as a random sample, after its burn-in sequence
(Robert & Casella, 2004). However, we would not worry too much about the burn-in sequence in our
study. In fact, from our real data application in the next section, we found out that the best candidate
models appear fairly early in the Markov chain. Also, there is evidence showing that the chain may
become stationary at a fairly early stage.

An Application with Real-world Data

To test the effectiveness of the random search, we would use a real-world data set originally pub-
lished by Schoener (1970). It recorded the habitat (perch) preferences of two species of lizard,
grahami (G) and opalinus (O). Specifically, it recorded the number of G’s and the number of O’s
on a particular perch. The height (H) and diameter (D) of the perch were also recorded, together
with whether the perch was sunny or shaded (S) and whether it was at early, middle (T1 = 1) or
late (T2 = 1) of a day. Let π be the probability of G occupying a random observed perch, then we
consider the main effects and the first-order interactions to obtain the following full logistic model:

log
π

1− π
= β0 + β1H + β2D + β3S + β4T1 + β5T2 + β6H ·D + β7H · S + β8H · T1 + β9H · T2

+β10D · S + β11D · T1 + β12D · T2 + β13S · T1 + β14S · T2

As there are 14 candidate variables, there will be 214 = 16384 candidate models in total. For testing
purposes, we use exhaustive search to rank the candidate models by their BIC values, and also
derive the theoretical (true) probability mass function (pmf) of the models. The possible over- or
under-dispersion of the data is also being considered. Then, we use the Gibbs sampling to generate
a Markov chain of size 1000. The results and discussions are as follows.

Table 1 lists the 5 best models with the smallest BIC values. With ϕ̂ very close to 1 (i.e. |ϕ̂−1| < 0.1),
the models also fit the data well in dispersion. We have recorded these best models’ first appearance
positions in the generated Markov chain. It turns out that they all appear in the first 200 runs
of the chain, which is fairly early. Typically, the top-1 model appears at the 34-th position of the
chain. Moreover, these best models also appear frequently in the chain. We can see that the total
frequency of the best 2 models = 0.373 + 0.210 = 0.583 > 50%.

Table 1: The 5 best models and their behavior in random search
Rank Model BIC ϕ̂ First-appear Frequency
1 H +D + T2 +H · S 23.988 0.982 34-th 0.373
2 H +D + T2 24.510 0.932 35-th 0.210
3 H +D + T2 +H · S +H · T1 26.706 0.995 69-th 0.029
4 H +D + T2 + S · T2 26.873 0.976 133-th 0.018
5 H +D + T2 +H ·D +H · S 26.920 0.993 37-th 0.023

Figure 1 shows the closeness between the true pmf of the models and the estimated pmf by the
model frequencies (e.g. see Table 1) in the Markov chain. This actually supports that the Markov
chain becomes stationary at a fairly early stage, within 1000 runs.

Fig. 1: pmf of the best 200 models

Based on the generated Markov chain of size 1000, we obtained the relative frequencies of the
14 variables. Table 2 shows the 5 most important variables with the highest relative frequencies.
We can understand this frequency of variable in the following way: relative-frequency(D) = 0.999
means that 99.9% of the models in the Markov chain include variable D. We can see from Table
1 and Figure 1 that the best models appear more frequently in the chain, so their corresponding
variables (i.e. the most important variables) should also appear more frequently. Therefore, the
relative frequency of a variable actually indicates its importance.

Table 2: The 5 most important variables and their relative frequencies
Variable D H T2 H · S S
Frequency 0.999 0.997 0.905 0.536 0.105

If we consider these variable relative-frequencies as proportions, we can use normal approximation
to construct confidence intervals (CI). We further define that a variable is significant when the CI of
its relative-frequency is above 0.5. Then we find only the following set of variables are significant :
{D, H, T2, H · S}. Unsurprisingly, these significant variables all appear in the best 5 models in
Table 1. Interestingly, the top-1 model only consists of these significant variables.

Conclusion

In this poster, we have studied and examined the variable selection or model selection method
proposed by Qian and Field (2002). We have employed BIC and the Gibbs sampling as tools for
selection, and we have also considered the effect of over- or under-dispersion of the data. Applying
the method with real-world data, we found that the method is efficient and effective, not only in
selecting out the best candidate models, but also in filtering out the most important variables. Also,
it might be useful to employ the dispersion parameter when applying this variable selection method.
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