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INTRODUCTION

A natural way to study groups is to examine their ac-
tions. This enables us to encode group elements as au-
tomorphisms of the target structure. In this way, ac-
tions may help us deduce information about the un-
derlying group. Of course, actions are necessarily only
a shadow of the original group. So, we ask: given
\a group and its category of representations, how can
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we recover the group itself? In this poster, we explore
Tannaka Duality for groups for the specific cases of fi-
nite dimensional vector spaces over a field k, Repy,(G)
and sets, Repge:(G). Our aim is to establish the re-
lationship between an arbitrary group and the auto-
morphism group of the forgetful functor associated to
Repset(G) and Repy(G) respectively.

RECONSTRUCTING G FROM THE FORGETFUL FUNCTOR Fl,;

To recover GG, we require several lemmas. Given categories C, D and functors £,G : C — D such that nis a
natural isomorphism E = G, then we can induce a monoid isomorphism End(E) = End(G) by the following
map

¢ : End(E) = End(G)
arnoaon?
F as func-
Hom?(X, X) as

By applying the Yoneda lemma, we can deduce two important lemmas. Firstly, Hom(H om( ,—),—) =
tors. Secondly, for a locally small category C' and X € C, then Nat(Hom(X, —), Hom(X,—)) = H
a monoid isomorphism. Finally, we can see that

End(Fser) = End(Nat(Hom(e, —),—))
>~ Hom®?(Hom(e,—), Hom(e,—))
>~ Hom(e,e)
=@

Indeed, since End(Fse:) = Aut(Fger) then G = Aut(Fget).
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Figure 2: Visualising Repse:(G) and Fset : RepiSet — Set
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RECONSTRUCTING G FROM THE FORGETFUL FUNCTOR Fy..

For this case we impose the restriction that G is finite.
Define the map

Furthermore, right multiplication by an element s € G
defines a morphism

v : G = Aut(Fyee)

9= (p(9)v,0) (vip)
Consider the representation (k[G], 7) where k[G] is the
group algebra and 7 is left multiplication. Our map is
injective since if 7(g) = idy g then
gh=hWheG = g=ce

Indeed, k[G] is special since we can show that any
n € End(Fy..) is completely determined by the com-
ponent 7 (g),-)- Assume that na).-) = Px[a),r), then
for arbitrary (V, p),v € V, define

M k[G] =V

l-eg=1—w

n n
Z @igi = Z aip(gi)v
i=1 i=1

R : (k[G]aT) - (k[G]vT)

which enforces that 7(;(q,-) is left multiplication by
some > ., a;9; € k[G]. Therefore, any natural iso-
morphism amounts to left multiplication by an ele-
ment of the multiplicative group of k[G]. Finally, if
n € Aut®(Fy..), then for arbitrary representations
(V. p1), (W, p2), imposing the equality

N(V.p1) @ NW,p2)

N(V,01)@(W,p2) =

implies

Then A, € Hom((k|G],7), (V. p)) ensures the following Z aip1(gi) ® Z aip2(gi) = Z aip1 @ p2(g:)
is commutative giving the desired result. i=1 i=1 i=1
A .
k(G] Ad This equality can only hold if a; = 1 for some fixed
j € {l,..,n} and a; = 0 for all i # j. By the defi-
. . . _— . nition of tensoring k-linear representations, it follows
ablt] B ML e) e thatn € Aut®(F)ifand only if n = (p(g))(v,) for some
g € G. Therefore, v is surjective and we can conclude
k[G] rw » V

G = Aut®(Fye.)
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THE CATEGORY Repgset(G)

Consider a group G as the one object category
BG such that for all gh € G g o h = gh.
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Figure 1: The group Z/6Z considered as a category.
A functor U : BG — Set maps e to some X € Set
and g € End(e) to a function f, : X — X. By the
functorality of U, we have U(e) = idx and for all
z € X,g9,h € End(e),U(goh)(xz) =U(g)oU(h)(x). By
setting g-x = U(g)(z), itis clear that U defines a group
action. Therefore, define Repg.; as the functor cate-
gory Hom(BG, Set). This category is equipped with
a forgetful functor Fs.; : Hom(BG, Set) — Set which
sends U € Hom(BG, Set) to U(e) and acts trivially on

\morphisms.

THE CATEGORY Repy(G)

Consider the category Repi(G) which has as objects
pairs (V,p) where V is a finite-dimensional vector
spaceand p : G — Aut(V) is a group homomorphism.
A morphism

61 (V,p) = (W,0)

is alinear map such that forall s € G, ¢op(s) = fop(s).
Repy(G) is also equipped with a forgetful functor,
Fy... To establish a similar result for Repi(G), we
must note that it has an additional monoidal struc-
ture induced by the tensor product. We can ask: given
n € Aut(Fy..), does it preserve tensor products? We
define the subgroup Aut®(Fy..) C Aut(Fye.) such
that

n € Aut®(Fyee) <= v, pew.e) = 1(v.p) @ 1(w,e)

\for all (V, p), (W,0) € Repy(G).

A CLOSER LOOK AT k|G|

Given c € k, o, 8 € End(Fye.), define

a+ B = (qw,) + B, (v

c- —(/BVp))(Vp)

These maps give End(Fy..) the structure of a vector
space and defining « - § := « o § renders End(Fy..)
an associative algebra. Extending v linearly defines an
algebra homomorphism v : k[G] — End(F). Indeed,
it is possible to adapt the proof in the bottom left to
deduce that {7(g1), ..., 7(gn)} is a basis for End(Fy.),
therefore v : k[G] — End(Fye.) is an isomorphism of
elgebras.
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