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Simulation Methodology

Time-series data are often of interest in real-life applications –for 
example, include the annual amount of carbon dioxide produced 
by Australia or the month-on-month value of local residential 
buildings. In applications like these, there is interest in using 
statistical models for inference or prediction.

However, working with real time-series data is often nuanced and 
complex:

• Influencing variables may change gradually or suddenly

• Imperfections in calculating quantities of interest arise from 
method changes, biases, or missing data. 

• Fitting models to time-series data is complex, requiring 
flexibility in how the response is modelled over time. 
However, flexible statistical and machine learning models are 
prone to overfitting to complex time-series patterns. 

The above challenges highlight two key tasks in the development of 
modelling methods suitable for time-series data: 

1. Simulation of time-series data that flexibly exhibit behaviours 
like step changes, sampling bias, and inconsistent sampling.

2. Development of a cross-validation approach for evaluating 
interpolation performance and understanding model 
limitations.

The work presented in this poster details the construction of 
frameworks used to address these goals.

Introduction

We simulate daily counts of close contacts in a hypothetical 
scenario, often used in infectious disease management.

• 1,066 days of contacts data are simulated within the hypothetical 
context, representing every day from January 1st, 2020, to 
December 31st, 2022.

• The expected number of contacts for a given day is calculated as 
the product of several mechanistic factors with varying levels of 
significance.

• Each day, 10 samples are taken from a Poisson distribution with 
an expected value given by the above product. This is 
summarised in equation 1.

Factor Minimum value Maximum value

Random uniform base 10.0 12.0

Public Holiday 1.00 1.15

School Holiday 1.00 1.15

Week date 0.90 1.15

Month 0.99 1.01

Lockdown 0.30 1.00

Week following lockdown 1.00 1.20

Average Temperature 0.90 1.10

Possible Variance 2.41 24.33

Table 1: The factors affecting daily contact expectations. Temperature 
follows a sinusoidal pattern, peaking in January. Lockdown and holiday 
data are based on Melbourne's history, as discrete variables that take 
only minimum or maximum values

𝑋𝑖𝑗~Pois ෑ
𝑘
𝑓𝑘(𝑖)

Equation 1:  The sampling distribution of 𝑋𝑖𝑗 , the 𝑗th sample of contact 
observations on the 𝑖th day. 𝑓𝑘 is the 𝑘th factor of the above table.

Figure 1:  The expected number of close contacts an individual will have 
on a given day. The drop in number of contacts in the dark regions are 
due to lockdown restrictions.

Missing and Erroneous Data

The count data generated in the previous section depict a 'perfect' 
observation scenario. However, real-life time-series are 
imperfectly observed. To simulate an 'imperfect' process, the 
following modifications were made to the original data:

1. Maximum of 5 samples taken in the first 100 days:

This simulates low response rates of survey-based data, which, in 
context, is likely in the early stages of the survey effort with lower 
public interest and awareness

2. Samples with more than 20 close contacts have an 50% chance 
of being undercounted:

In context, this represents individuals with many close contacts 
who might misremember the exact number of contacts. 
Undercounting happens by subtracting an integer from 1 to 5.

3.  10% fewer samples in days that are not weekends or public 
holidays:

Represents a baseline imperfect response rate (i.e. the survey is 
unable to fill its response quota). 10% of all samples are removed 
from data at random.

4.  60% fewer samples in weekends and public holidays:

Represents potential effect of non-working days on survey 
response rate.

Figure 2:  The impact of the removal of data and creation of bias in the 
first 100 days of data - full black circles are true observations recorded, 
empty ones are missed. Full red circles represent biased 
(undercounted) observations.

Cross-validation Methodology

Figure 3:  A schematic that shows the steps involved with data simulation 
and cross-validation. Rounded rectangles represent pieces of data while 
diamonds represent the operations on data. The red and blue arrows 
represent alternative paths of evaluation. 

𝑘-fold cross validation is a technique used in machine learning to 
provide a robust evaluation of model performance on unseen data³.  
• Training data is divided into 𝑘 parts for iterative model 

evaluation. Each time, one part is kept aside for testing, and the 
rest is used for training. 

• To account for the time structure of our data, partitioning was 
done in continuous time intervals1.

• Two evaluation methods were considered: comparing model 
predictions to withheld training data or to the unbiased data 
generated for the project. 
o The latter helps understand how models trained on 

biased data would perform if tested with “correct” data 
later.

Cross-validation Example

While generalized additive models (GAMs) are demonstrated 
here for testing the cross-validation framework, the framework 
can be applied to any statistical or machine learning model for 
time-series data. That said, I found invaluable guidance on 
GAMs from Simpson’s recorded webinar². 

The following models were tested:

1. A GAM that fits contacts based on lockdown presence and 
time. The model is highly non-parametric, with an upper 
limit of 300 degrees of freedom to make up for lack of other 
information.

2. Another GAM that considers additional factors like holiday, 
week date, and month, without prior knowledge of their 
impact on expected number of contacts. It has 100 degrees 
of freedom.

3. A benchmark model that returns the time-constant mean 
number of contacts in the training data.

During each cross-validation iteration, the models were 
evaluated using the root mean square error (RMSE) of prediction 
values compared to unbiased and biased observations.

Figure 4:  An illustration of 𝑘 = 5 cross-validation. The second partition 
(darker shade) has been withheld for testing. The small grey circles 
depict biased observations, while the red/blue crosses show the 
predictions of the first and second GAMs in the second partition, 
respectively.
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Figure 5: The average RMSE of the above models.

The second GAM model had the lowest error, revealing that the 
model fitted with more information was less susceptible to 
overfitting. Testing on biased/unbiased data yield similar results.

The frameworks and codes in this model are designed to be highly 
adaptable, making this poster's work an excellent tool for model 
evaluation. Extensions encompass:

• Employing an alternative sampling distribution; for instance, a 
negative binomial distribution accommodates larger variances 
than feasible with a Poisson distribution.

• Exploring various factor types using real-world data to justify 
their influence on distribution parameters.

• Incorporating different forms of bias or missing data to better 
reflect real-world scenarios.

• Cross-validating GAMs with diverse hyperparameters or entirely 
different statistical and machine learning models.

• Comparing the cross-validation performance of models on 
simulated data to real-world samples

Extensions
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