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Introduction

Generalized Additive Models (GAMs) are a well-
established tool for time series analysis, known for
their flexibility in capturing intricate and sporadic
temporal patterns. This work focuses on the appro-
priate application of GAMs for time-series analysis.
Our goal is to rigorously test how GAMs are best cal-
ibrated for complex time-series count data, examining
the impact of different mechanistic predictors and lev-
els of rigidity in the smoothing of response over time.
In navigating these complexities, we aim to gain in-
sight to important decisions and strategies in using
GAMs for time-series analysis.

Method & model

Context of simulated data: daily close contacts

We explore GAMs with a hypothetical dataset of
close contact numbers surveyd by an infectious
disease surveillance team. The response variable
is ”Number of Contacts,” with varies with ”Days,”
but is also affected by ”Lockdown,” ”Public Holi-
day,” ”School Holiday,” ”Weekend,” ”Month,” and
”Year.”

Fig. 1: Single predictor model predictions (without smooth terms
VS with simple smooth of day)

Controlling smoothing terms for flexibility &
model robustness:

GAMs introduce smooth terms, a key feature al-
lowing flexible response shapes with respect to a
predictor. Figure 1 visually contrasts models with
and without smooth terms over the ”Days” predic-
tor. Strategic adjustment of the number of knots
for smooth terms crucial for model accuracy and
resilience. Figure 3 vividly illustrates the impact
of varying knots on model performance.

Leveraging categorical predictors:

Our methodology utilizes categorical variables be-
yond step changes; we harness them as valuable
mechanistic predictors. Events like lockdowns and
school holidays offer crucial insights into under-
lying data patterns. This approach allows for a
nuanced strategy — identifying these events en-
ables the use of more rigid smoothing terms for the
time-since-start predictor without compromising
overall model fit. This efficient use of mechanis-
tic predictors enhances interpretability and pre-
dictive accuracy (Figure 4) and contrasts those
without categorical mechanisms’ flexible but lower
predictive accuracy (Figure 2), unraveling intri-
cate patterns within the time series data. (Figure
3)

Fig. 2: Smooth day only model,
without any mechanistic predictors:
Knots tuning and resulted RMSE

trend

These are some meth-
ods that modellers
can use to model
their GAMs. How-
ever, ultimately we
use cross-validation
to choose the best
parameter inputs.

Results

Our exploration into model parameterization, encompassing various predictors and smoothing settings in GAMs,
extends beyond knots, providing insights into diverse parameterization strategies via cross-validation.

Parameterization strategies

• Predictors Variation: Inclusion of diverse
predictors adds complexity, capturing underly-
ing patterns.

• Smoothing Settings: Altering settings, no-
tably knot count, is critical for refining model,
to avoid underfitting or overfitting.

Performance metrics

To gauge efficacy, we used both RMSE and % De-
viance Explained.

• RMSE: Indicator of predictive accuracy.

• % Deviance Explained: Measures the pro-
portion of variability in the response variable
that is accounted for by the model.

Fig. 3: Comparison of different parameterizations in 5-fold cross validation, where the dataset is split into 5 even-bin subsets for iterative training (4
bins), testing (1 bin), and evaluation. Data points are represented as follows: Black = Simulated data collected; Red = True mean; Blue = Model

prediction. In the bottom row, models with smoothing terms of 20 knots exhibit a common pattern of spurious high values in the testing folds,
suggesting potential overfitting to the training data due to excessive model complexity leading to poor generalization.

Balancing trade-offs through
cross validation

Our approach involves system-
atically testing different pa-
rameterizations using cross-
validation. This not only iden-
tifies the optimal model com-
plexity but also ensures stabil-
ity and robustness by assess-
ing the model across various
parameter configurations. For
instance, through systematic
cross validation of the GAM,
k=6 visibly demonstrates the
best predictive accuracy as well
as a good robustness. (Figure
4)

Fig. 4: Tuned model with mechanistic predictors: knots tuning and resulting RMSE trend. The current
model, incorporating optimized mechanistic features, outperforms the simpler model lacking such

predictors. However, its optimal performance is attained with fewer knots for the smoothing term, as
evidenced by the low RMSE at k=6 (optimal performance) and other viable candidates with k<6.

Conversely, more knots generally yields extremely poor performance in the testing fold (Figure 3). In
contrast, the simpler model accommodates a higher number of knots before encountering overfitting

issues, typically after approximately knots >= 40, resulting in artificially high RMSE values (Figure 2).

Remarks

This study highlights the nuanced nature of fit-
ting GAMs to time series data, considering fac-
tors like mechanistic inputs and smoothing term
flexibility. While we present an optimization
framework, it’s important to acknowledge inher-
ent methodological limitations. Simulating data
with known mechanisms simplifies tasks but dif-
fers from real-world challenges. Identifying suit-
able mechanistic predictors requires domain ex-
pertise. Our model’s success depends on context
and may not universally apply. Recognizing these
challenges underscores the need for refinement in
diverse scenarios.
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