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Introduction

A polymer is compromised of many interconnected subunits called

monomers.

Figure 1. section of propylenepolymer

Long chain polymer structures can be modelled as directed, self avoid-

ing walks embedded into a discretized 2D lattice, where each carbon-

carbon bond forms a edge of the walk. We enumerate the number of

configurations in a polymer of length n for the propagation of walks

both above the wall and within a strip of a lattice

Intramolecular forces lead to attractive and repulsive interactions be-

tween the wall and the polymer, which we model with the wall interac-

tion parameter a. We refer to polymers attracted to the wall as the ad-

sorbed phase and those experiencing repulsion as the desorbed phase.

Similarly, intermolecular and intramolecular forces influence molecular

stiffness and packing, modelled by p

Figure 2. Effects of increasing the vertical stiffness parameter for walk in a strip

Background

Kernel Method: Generating functions are computed through the kernel

method. Growth rate is extracted from the singularities. We follow a

similar approach to Wong’s 2015 paper.

Theorems

Multivariate Ordinary Generating Function For the combinatorial

class A , the multi-dimensional parameter (χ = χ1, χ2 . . . χd) on A
maps the class to Nd of d-tuples of natural numbers.

A{n,k1...kd} where |a| = n, χ1(a) = k1, χ2(a) = k2...χd(a) = d1 (1)

For the sequence {An,k} is the formal power series

A(z, u) =
∑
n,k

An,kukzn (2)

Pringsheim’s Theorem(Flajolet and Sedgewick) [23], page 240. If f(z)
is representable at the origin by a series expansion that has non-

negative coefficients and radius of convergence Rz , then the point

zc = Rz is a singularity of f(z) For a ordinary generating function f(z),
if f(z) is analytic at 0 then radius of convergence Rz is the modulus of

the dominant singularity. The co-efficent fn = [zn]f(z) satisfies

fn ./

( 1
Rz

)n

(3)

Methodology

To reduce the complexity, let H(z, s; a, b, p) represent the generating

function of walks ending with a horizontal step, D(z, s; a, b, p) all walks
ending with a upstep and U(z, s; a, b, p) represent all walks ending with
a upstep. We define the variables:

Variable Interpretation

z length

s height (final vertex)

w strip width

Parameter Interpretation

a bottom wall interactions

a top wall interactions

p vertical stiffness

By definition, we construct these generat-

ing functions by taking an extension of all

valid steps from the existing set of walks,

and subtracting all invalid steps. For the

case of walks in a strip there is the ad-

ditional subtraction of invalid walks that

cross over the upperwall and therefore the

functional equation for walks above a wall

are a subset of walks in a strip.

Step Set

z

zs

zs−1

note the trivial walk 1 belongs in neither equation, so it is arbitrarily

added into H(z, s; a, b, p)

Methodology

Kernel

The kernel k(z, s; a, p) is independent to wall interaction parameters.

Computing for when k(z, s; a, p) = 0, the roots are quadratic in s

K(z, s; p) = 1 − z −
(

z2s

1 − zsp

)
−
(

z2

s − zp

)
We find a symmetry relation between s+ and s− s.t the roots are

inverse proportional. s− = 1
s+

Figure 5. Symmetry of roots

s±(z; p) =
(

1 − z + p2z2 + 2pz3 −p 2z3 ±
√

−4(pz + z2 − pz2)2 + (1 − z + p2z2 + 2pz3 − p2z3)2

2(pz + z2 − z2)

)

Weneed to check if s± are valid by checking that generating functions

are convergent. For a walk in a strip of length k, the height is at most

k, therefore the polynomial Pk(z) = [zk]H(z, s) is maximally degree k.
Substituting a finite polynomial into a power series will produce trivial

convergence. So we only need to verify the above the wall case that

is analogous to w 7→ ∞,

Figure 6. s−(z; a, p) for varying p against z

Figure 7. s+(z; a, p) for varying p against z

Taking a expansion of s with respects to z in our generating function

H(z, s+; a, p) =
∑

zkPk(s+)
(
pz + z2 + O(z3)

)
=
∑

O(z2k)

H(z, s−; a, p) =
∑

zkPk(s−)
( 1

bz
− 1

b2 + O(z)
)

=
∑

O(constant)

Therefore, only s+ is defined by walks above a wall

Results

Generating Functions

To reduce complexity, we analyze the singularities in the subset of

walks ending in a horizontal step along the bottom wall s = 0. The
growth rate ought to remain consistent across all walks in the set and

hence consistent across all subsets.

Walks Above Wall Coefficient:

H0(z, s; a, p) =
( (s − pz)(1 + zsp − z2p2)

−ŝ + aŝ − abz − az2 + abz2

)
Walks in a Strip Coefficient:

H0(z, s; a, p) =
1

a2sw (1 + zp
s−zp)(a − 1 − z(za+p(1−za))

s−pz )+

− 1
a2sw (a − 1 − z(za+p(1−za)

s−zp )2 + sw

a2 (a − 1 − zs(za+p(1−za))
1−zsp )2

+sw

a2 (1 + zp
1
s −pz

)(a − 1 − zs(za+p(1−za))
(1−zsp) )

− 1
a2sw (a − 1 − z(za+p(1−za)

s−zp )2 + sw

a2 (a − 1 − zs(za+p(1−za))
1−zsp )2

Results

Singularities forWalks Above aWall

There are two sources of singularities: square root and denominator.

An exact equation was obtained between a and p where both singu-

larities from the square root and denominator coincide.

(a − 1)(p − 2)2 = a(5 −
√

9 − 2p + p2) + b(2
√

9 − 2p + p2 − 7)

Figure 8. Zero Force Curve for Stifness against Wall Interactions Parameters

region zc

absorbed z =
(

1+b−
√

9−2b+b2

2(b−2)

)
desorbed −ŝ + aŝ − abz − az2 + abz2 = 0

Singularities forWalks in a Strip

The extracted coefficient is rational, given that the associated transfer

matrix comprises solely polynomials. With only pole-type singulari-

ties present, its dependency is strictly on the denominator.

âc(p) = 1
4

(
2
√

p2 − 2p + 9 −
√

p2 − 2p + 9
p

+ 2p + 3
p

− 1
)

Employing the relationship between a and p as seen in walks above

thewall, an exact solution for the zero-force curvewas achieved. This

curve signifies a point of width independence, where no force is ap-

plied to the walls.

F (w) = ∂k(w)
∂w

F (w) = 0 ⇐⇒ zc(w) = zc(w + 1)

Equation for the dominant singularity zc indpendent to both w and a

zc(p) =1 − −18 + 18p + 6
√

9 − 2p + p2 − 6p
√

9 − 2p + p2

2(2 − 3p + p2)2

+ 5 + 9p − 3
√

9 − 2p + p2 − 2p
√

9 − 2p + p2

2(2 − 3p + p2)

The free energy is given by:

K = log
( 1

zc(p)

)
(4)

Conclusion

The growth rate and free energy exhibit width independence as conse-

quence of the the zero-force curve. This relationship establishes that

growth rates for walks in a strip are analogous to walks above a wall, as

the dominant singularities coincide.

Figure 9. Co-efficent of Generating Function H(z, s, âc(p), p) for varying p

References

[1] Nicholas R Beaton and Aleksander L. Owczarek. Exact solution of weighted partially directed

walks crossing a square. Phy. A: Math. Theor, pages 1–21, 2023.

[2] Aleksander L. Owczarek. Exact solution for semi-flexible partially directed walks at an adsorbing

wall. J. Stat. Mech, pages 1–17, 2009.

[3] Thomas Wong. Enumeration problems in directed walk models. The University of British Coloumbia

(Vancouver), pages 1–211, 2015.

catzhao@student.unimelb.edu.au

mailto:catzhao@student.unimelb.edu.au

