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A polymer is compromised of many interconnected subunits called

monomers. Kernel Singularities for Walks Above a Wall
The kernel k(z, s; a, p) is independent to wall interaction parameters. There are two sources of singularities: square root and denominator.
C|3Hs H (|3H3 T' C|3Hs T CH; T Computing for when k(z, s;a, p) = 0, the roots are quadratic in s An exact equation was obtained between a and p where both singu-
c|: cI: (I:_CI: ? ? cI: Ic— ) ) larities from the square root and denominator coincide.
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Flgure 1 SeCtlon Of propylenepC)lymer We ﬁnd a Symmetry relatlon between S+ and e St the rOOtS are Zero Force Equation for Walk Above the Wall for Stiffness Against Wall Interactions
inverse proportional. s_ = i o ‘ ‘ ‘ ‘
Long chain polymer structures can be modelled as directed, self avoid- 10}
ing walks embedded into a discretized 2D lattice, where each carbon- s
carbon bond forms a edge of the walk. We enumerate the number of 5. s,-,,gu’}';ﬁgff}fpifﬁizyon
configurations in a polymer of length n for the propagation of walks Z Bt
both above the wall and within a strip of a lattice | | — Posiive Rool, p=1 :
-2 » — Negative Root, p=1

Intramolecular forces lead to attractive and repulsive interactions be-
tween the wall and the polymer, which we model with the wall interac- 5| :
tion parameter a. We refer to polymers attracted to the wall as the ad-
sorbed phase and those experiencing repulsion as the desorbed phase.
.. . . . 2 / Smgulantzef depem? on both stiffness and
Slmllarly, mtermolgcular and intramolecular forces influence molecular Figure 5. Symmetry of roots : wall interlaction parameters
stiffness and packing, modelled by p

wall interactions a

Desorbed Phase
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Figure 8. Zero Force Curve for Stifness against Wall Interactions Parameters

We need to check if sy are valid by checking that generating functions

are convergent. For a walk in a strip of length k, the height is at most region Ze
k, therefore the polynomial Py(2) = [z¥]H (2, 5) is maximally degree k. absorbed Y — (1+b—2x/b9—22b+b2)
Figure 2. Effects of increasing the vertical stiffness parameter for walk in a strip Substituting a finite polynomial into a power series will produce trivial desorbed  —& + as — abz —(a;z) fabs—0

convergence. So we only need to verify the above the wall case that
is analogous to w +— oo,

Background Singularities for Walks in a Strip

The extracted coefficient is rational, given that the associated transfer
matrix comprises solely polynomials. With only pole-type singulari-
ties present, its dependency is strictly on the denominator.
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Kernel Method: Generating functions are computed through the kernel
method. Growth rate is extracted from the singularities. We follow a
similar approach to Wong's 2015 paper.
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Multivariate Ordinary Generating Function For the combinatorial
class 7, the multi-dimensional parameter (x = x1,x2---Xd4) ON &
maps the class to N¢ of d-tuples of natural numbers.

— p=t

Employing the relationship between a and p as seen in walks above
the wall, an exact solution for the zero-force curve was achieved. This
curve signifies a point of width independence, where no force is ap-

Ak kay Where |a] = n, x1(a) = k1, x2(a) = ko...xa(a) = di (1) \ plied to the walls.
For the sequence {4, k} is the formal power series Figure 6. s_(z; a,p) for varying p against z F(w) = %
w
= Z An,kukzn (2) w0 / Fw) =0 < z(w) = 2.(w+1)
/ Equation for the dominant singularity z. indpendent to both w and a
Pringsheim’s Theorem(Flajolet and Sedgewick) [23], page 240. If f(z)
is representable at the origin by a series expansion that has non- -
negative coefficients and radius of convergence Rz , then the point | | - (p) =1 — —18 4+ 18p + 6+/9 — 2p + p% — 6p/9 — 2p + p?
z. = R, is a singularity of f(z) For a ordinary generating function f(z), B B — Ze\P) = 2(2 — 3p + p?)?
if f(z) is a‘nalyﬁc'at 0 then radius of convergence R, is the modulus of " 5 99 -39 —2p 1 g% — 209 — 2p + PP
the dominant singularity. The co-efficent f,, = [z,]f(z) satisfies 22— 3p+ )
1 n
Jn D2 (E) (3) The free energy is given by:
Figure 7. sy (z;a,p) for varying p against z K =log ( L ) (4)
ze(p)
Methodology Taking a expansion of s with respects to z in our generating function
To reduce the complexity, let H(z, s;a,b,p) represent the generating H(z,s4;a,p) szpk (s+) (pz + 2+ 0(z ZO M)

function of walks ending with a horizontal step, D(z, s; a, b, p) all walks Conclusion
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k
ending with a upstep and U(z, s; a, b, p) represent all walks ending with H(z,5-;a,p) Zz Py(s <_ T2 +0(z ) ZO constant)
a upstep. We define the variables:

The growth rate and free energy exhibit width independence as conse-
quence of the the zero-force curve. This relationship establishes that

UnEErere, only s 15 eEfines 0y walks aoeve 2 el growth rates for walks in a strip are analogous to walks above a wall, as

Variable Interpretation Parameter Interpretation ) . . 7
P length a bottom wall interactions the dominant singularities coincide.
s height (final vertex) a top wall interactions
w strip width P vertical stiffness Resu'-ts o S ‘ o
By definition, we construct these generat- Generating Functions K
ing functions by taking an extension of all Step S b
: tep Set To red lexi lyze the singularities in the subset of
valid steps from the existing set of walks, 0 reduce complexity, we analyze the singularities in the subset o .
and subtracting all invalid steps. For the z walks ending in a horizontal step along the bottom wall s = 0. The :2
case of walks in a strip there is the ad- growth rate ought to remain consistent across all walks in the set and ' .
ditional subtraction of invalid walks that Z58 hence consistent across all subsets. o°
cross over the upper wall and therefore the Walks Above Wall Coefficient:
functional equation for walks above a wall .
. . ZS_
are a subset of walks in a strip. (s — pz)(1 + zsp — 22p?)
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e Figure 9. Co-efficent of Generating Function H(z, s, a.(p), p) for varying p
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