Topic 1: Vectors

1.1 Vector notation

1.2 Vector algebra

1.3 Rectangular coordinates

1.4 Length of a vector

1.5 Standard unit vectors

1.6 Dot product

1.7 Scalar and vector projections

1.8 Parametric curves

1.1 Vactior notation

We can represent a vector diagramatically as a directed line segment
j s >
u t

The length of the line represents the magnitude of the vector and the
orientation of the line represents its direction.

There are several different ways of writing a vector; AB means the
vector starting at the point A and ending at the point B. The notation
u (this is a boldface u) is also used to indicate that the quantity you
are using is a vector rather than a scalar. When we are writing a
vector by hand we often use a symbol called a filde, u.

There are many different types of quantifiable objects, for example,
time, length, speed and height. We can quantify these things with a
single (real) number which we call a scalar. Scalar quantities have
magnitude only.

Some quantities, however, require more than just a scalar magnitude
to be completely specified, for example, displacement, velocity and
force. These quantities also have a direction. We call these quantites
vectors. Vectors have magnitude and direction.

1.2 Vector algebra

Since we are no longer dealing with real numbers, we need to de-
fine what we mean by equality, addition, subtraction and so on, for
vectors.

1.2.1 Equality of vectors
Since vectors have both magnitude and direction, fo say that two

vectors are equal means that they must have the same direction and
the same magnitude.
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Example:

z
u w

In the figure above we can make the following statements:

u=v
u # w (since they have different direction)
u # z (since they have different magnitude).

In general, to add two vectors, take the tail of one vector and join it
to the head of another.

/

The resultant vector starts at the tail of the first vector and ends at
the head of the second vector:

We call this resultant vector, the sum of the two vectors u and v.
7

1.2.2 Addition of vectors

Suppose now that we have iwo vectors; the vector u which repre-
sents the vector starting at the point A and ending at the point B,
and the vector v which represents the vector starting at the point B

and ending at the point C.
. B

EZ

The overall effect can be represented by a new vector w which starts
at the point A and ends at the point C. In this sense, we say that

w=u-v.

1.2.3 The zero vector

The zero vector is the vector that has zero length and no direction. It
is denoted by 0.

1.2.4 The negative of a vector

u

If u is the vector from A to B then —u is simply the vector from B
to A. So the negative of a vector has the same magnitude but the
opposite direction of the original vector.
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We can subtract the vector w from the vector u by adding the nega-
tive of w to u.

/

w

—w

"~

That is, we reverse the direction of w and then add:

u-w=u+ (—w)

1\
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Example: Consider the rectangular prism below, where AB = a, BC

band AE = c:
G

=

—————————— o o o — C

ol
3

A a B

Express the following in terms of a, b and c.
— e S
@ EF = AR = a

—
) FB = EA T — At = -

Ny

10

1.2.5 Multiplying a vector by a scalar:

We can multiply any vector by a scalar (number). if the scalar is
positive, then only the magnitude will be affected; that is, the direction

will not change.
/

e ,// A

If the scalar is negative, the magnitude will change and the direction
will be reversed.

12
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Example: Let ABCD be a parallelogram and let P divide the seg-

— —_—

ment BC in the ratio 2 : 3. Express AP in terms of the vectors AB
—_
and AD.

D C
3
P .
2
A B
.__;, —
E‘; = AR € BF
%;é: %_BC
-
b = M E %t

13

1.3 Rectangular coordinates

1.3.1 Rectangular coordinates in R2

To simplify problems involving vectors, we can introduce a rectan-
gular coordinate system. Let a be a vector in the plane that has its

starting point at the origin of a rectangular coordinate system. lis tip
is at the point (a1, ao) as pictured below.

17 75 SRR EECRRR P ! (al ’ az)

a

1.2.6 Parallel vectors

Two non-zero vectors u and v are said to be parallel if and only if
there is a non-zero scalar k£ € R such that u = kv.

1.2.7 Properties of vectors
1.a4+b=Db+a {vectors are commutative)

2. (a+b)+c=a+(b+c) (vectors are associative)

3. a4+0=a {property of the zero vector)
4, a4 (-a)=0 (property of the negative vector)

5. m{(a+b)=ma-+mb (scalar multiplication is distributive)

14

The coordinates (a1, a») are called the components of a, and we
say that

a = (a1,a2).

Ifa = (a1,a>) and b = (b1, bp) are both vectors with initial points at
the origin, we say that they are equivalent exactly when their terminal
points coincide. In terms of components, this means that

a=Db if and only if a1 = by and as = by.

The algebraic operations that we have already defined for vectors
are easy to perform when we write vectors in component form. We
simply apply the operations component-wise.
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Examples: Let v = (3, —2) and w = (1, 5). Calculate

@v+w = (3,4 4 (i,5)= (43
Bvow = (3,0 — (s) = (577
ow_v = (45)= (3-2) = ('1¢7)
(d) 3v = 3(’;112) = (q)%)

Homewark: Let v = (1,—3) and w = (—1,~4). Repeat (a)-(d)

above.
Answers: (@) (0,-7) (0)(2,1) (c)(-2,-1) () (3,-9)

The properties of vectors in section 1.2.7 can be easily proved using
rectangular coordinates in R™.

Example: Prove that a+b =Db +} a forvectors a, b in R3.

Leta = (a1, ap,a3) and b = (b1, bo, b3) be vectors in R3. Then

a+b = (a1,a2,a3) + (b1,b2,b3)
= (a1 + b1,a2 + bo,a3 + b3)  (by definition of vector addition)
= (by +a1,bo +as,b3+a3) (since real numbers are commutative)
= (b1, b2,b3) + (a1,a2,a3) (by definition of vector addition)
=b+a

19

1.3.2 Rectangular coordinates in R"

We can extend the definition of a vector in component form to any
number of components we like. So v = (1,4,7) is a vector in R3
whilst w = (1,0,2,4,7) is a vector in R. The same algebraic
operations apply in any R™.

Be careful, however, because you can only perform operations be-
tween vectors of the same dimension (that is, between vectors with
the same number of components).
So:

wean+eon= (34 ¢)
but

notr debnad

1,47+ (2,0 =

18

1.3.3 Vectors with initial points not at the origin

Sometimes a vector is positioned so that its initial point is not at the
_

origin. Suppose that the vector PQ has initial point P(z, y, z) and

terminal point Q(a, b, ¢).

We can work out the components of ITQ) as follows:
—— -
PG=PO0+0Qg = —of *o0Q
=0Q - OP
= (a7 b7 C) - ($1y7 Z)
=(a—z,b—y,c— 2).

So:

—
PQ=(a—z,b-y,c—2)

20
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An easy way to remember this is

1.4 Length of a vector

As already discussed, every vector has a magnitude or length. We
can find the length of a vector in component form by using Pythago-
ras’ Theorem. -

4y
. 1o : (ts, 1)
PQ = endpoint — initial point NV
=Q-P !
Q s
where the Q and P here may be thought of as representing the po- :: X
sition vectors OQ and OP. u, 72
21 23
Example: If P; has coordinates (1,5, —2) and P, has coordinates
———
(2, -1, O), find Py Po.

7 P'L(Zl i(l D)

P, (llf,—t) E}I =P,

y

(21,0 = (15, )

A}

\

(‘tvé,?’)

Homework: If A has coordinates (2, -3, -7) and B has coordi-
—_—
nates (1, -3, 2), find AB.

Answer: (—=1,0,9)

22
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The length of u (also called the norm of u), denoted as ||u}}, is given
by:
lull = Vu1? + uz?
We can extend this definition to vectors in R3 (or indeed R™ for any
n € N) as follows.

Firstly, for u € R3 the length of u is given by:

)l = vur? + u? + uz?

For u € R", this generalises to:

)l = Vg2 +up + - 4 un?

24




To see the R3 case, first note that the length of the line segment OR

below is /u12 + up2.

Therefore
|oF| = |ox]” + |rP

S e R

— \/11.12 +u22 +u32

i

as claimed.

25

1.4.1 Properties of the norm

For any vector u, the following properties are always true:

1. |ju|| > 0 and ||u|| = 0 if and only if u = 0.
2. ||kul| = |k|[|u] for any k € R.
3. flu+ v < [lulf+ vl

Example: We will prove property 2 when u = (u1,up,u3) € R3.

lkul] = ||k (u1, u2, u3) ||
= || (ku1, kusg, kus) ||

= (ku1)? + (kup)? + (kuz)?
= /12 (w1 + (w20 + (22)?)

= ||/ (u1)? + (u2)2 + (u3)?
= [k [Jul

27

Example: Find the length of the vectors (a) (1,2) (b)(-1,3,-2).

@) LG, 20 = drar

= {s
& b ) e ey 3 )
= @

Homewaorl: Find the length of the vectors (a) (-2,—-1) (b} (-3,6,-2).
Answers: (@) v5 (D) 7

26

1.4.2 Distance between two points

If P(uy,us,u3) and Q (vy,vo,v3) are two points in_IRf, then the
distance between them is just the length of the vector PQ:

z QO(vi,v2,v3)

P(uiuzus)
a

y
X
We know that 17@ = (v1 — u1,v — up,v3 — u3) , S0 the distance
between P and Q is
. —_—
dist(P, Q) = ||PQ|
= (w1 —u1)? + (v2 —u2)? + (v3 — ug)?.

28
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Example: Find the distance between the points P(—2,1,0) and
Q(Sa —17 1)

Q
(3,-\1)

p o) B =)
= (5,-1,1)

Av (08) = || 7 |

= 1L (5)- l‘*)\l

Homework: Find the distance between the points A(—3,1, —1) and
B(2,0,-1).
Answer: V26

29

Example: Is the vector v = (1,2, 1) a unit vector? If it is not, find
a unit vector in the same direction as v.

Ser o

2 w0 Aok a uah Vector

vl = L Ga, ol

1<

& wd veddor in o wme odechon g

\<>\4

Xr — (‘{'?‘4\) _ \

- ———— —
Pad

—_ =
vl T g \%ﬁ,\%)

RS

Exoi - chede Huis Lag UW("H'\ \ ’QU ?WQ«? el

o em——.

1.4.3 Unit vectors

A vector with length 1 is called a unit vector. If u is any vector,
we can construct a unit vector in the same direction as u by simply
dividing the vector u by its length | u|).

We use the notation 1 to denote the unit vector in the direction of u:

u

flull

/

A
u (length 1)

=

We can check that @i has length 1 as follows:

pol =l

laf = H ul| =

30

Example: Let v be a vector from A(2,0,—1) {0 B(1,2,-3). Find
two unit vectors parallel to v.

£y -t (4,%)
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1.5 Standard unit veciors

We now introduce some special unit vectors. Leti = (1,0) and
j = (0,1). ltis easy to see that both of these vectors have length
1. It is also easy to see that the vectors lie along the x—axis and
y—axis respectively.

y

They are called the standard unit vectors in R2.

33

We can extend the definition of standard unit vectors to R3 by viewing
i and j as vectors in R3 and introducing another unit vector in the z
direction, which we call k.

The standard unit vectors in R3 are therefore:

i=(1,0,0), j=(0,1,0) and k = (0,0, 1).

z

35

Every vector in R2 can be expressed in terms of i and j.

Example: Express the vectors v = (1,2) and u = (-1,3) in
terms of i and j.

34

Every vector in R3 can be expressed in terms of i, j and k.

Example: Expressthevectors v = (-3,1,2)andu = (-1,1,-2)
interms of i, jand k.

/\\/.«: ("3(l(l) = «3(“0'0)_(, (0,1,0)4-2//0) Ol‘)

= =3 F 3+ Tk

~~

® = (_."(’,L) - ‘r;»{' :jv'/l&,

36




In general, if u = (u1,up) € R2, then

u=wuyi+ usj

Similarly, if v = (v1,v0,v3) € R3, then

v=w1itvaj+uszk

These two notations (rectangular coordinates or i, j, k) may be used
interchangeably, and the same algebraic operations apply.

Warning! It is important to specify whether a vector of the form
u=uji+ usjisin R?2 or R3. If uis in R3 we can write u =
u1 i+ usj+ Ok to be clearer.

37

1.6 The dot product

We have seen how to multiply a vector by a scalar but we have not
yet discussed the idea of multiplying a vector by another vector. In
vector algebra there are two different ideas about multiplication of
vectors. One is ‘called the dot product which we discuss now, the
other, the cross product, will be introduced in Caiculus 2.

Let u and v be two vectors in R2 or R3 and assume that the two
vectors have been positioned so that their tails meet. We define the
angle between u and v to be the angle 6 such that 0 < 8 < 7 as
pictured below.

39

Example: fu=i+43j—2kand v = 2i — j 4 3k, find

‘l.u-i—v:(‘>v 3;\'-— 1&)*’ (l;\__—‘,}v-{— ?}_’;)

Sik b

2vow = Ly a3k = (e o

Rl S

3. 2u43v . 7_(;*3%_,7,3) + ?(1‘.’~’3L+?}v)
24 by Ut 6L~ 3 49k

= ?:L-PZ’ -%S,LL/ 38

1.6.1 Definition of the dot product

The dot product of two vectors u and v, also known as the scalar
product, is denoted by u - v and is defined as:

u- v = |lulj|v]|cos(6)

where 8 is the angle between u and v.

To calculate the dot product, we need to first calculate the length of
u, the length of v and the cosine of 8. Since all of these quantites
are scalars, the dot product will be a scalar quantity (not a vector)!

40
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Given u and v, we can easily find ||u|| and ||v||, but we also need to
know cos(6). This can be found using the Law of Cosines.

P

The Law of Cosines says that
—_—
IPQIIZ = llul? + IvlI* — 2ljullfjv]| cos(6).
Since PQ = —u 4 v = v — u, this can be rearranged {o give:

[l + (vl ~ lv — ul?
2fullv]

cos() =

41

1.6.2 Important properties of the dot product

Let u, v and w be vectors in R? or R3 and X € R.

1. The dot product of two vectors is a scalar.

2. The order of multiplication is not important (that is, the dot prod-
uct is commulative), so

u-v=vVv-u
3. The dot product is distributive; that is,
v-{ut+w)=v.-ut+v-w.
4. Mu-v)=(0Qu) -v=u-(Av).
5. If u and v are perpendicular, then u-v =0.
6. The dot product of a vector u with itself satisfies u-u = ||ul|2.
7

.u-u>0, andu-u=0ifandonlyifu=0.

43

Example: Let u = (0,0,1) and v = (0,2,2). Find u - v, by first
finding cos(8) using the Law of Cosines.

Ll Ly 1= [y - ull”

e

we & 7 v | _—
S 2 ha ity (SN E T \
s - W = Jometr = 38
i (\E) A- (0,2.1)~ (00,9
2\ 38 DB e (e
’«(0/1\\)
= V4§
i \\x'gu/«&ﬁ‘f\—‘
188 e
- -q,/ - _'z/
28 Ry
D weye (eligley = 1F FE 2

L

Some questions

1. Can you take the dot product of three vectors?

L dob prosuck of 2 wtckess oo

Scelda , 50 (annok Pl olot f.ufo@fuc/# oF
iy Wt aethe-  vector .

2. Why is 5 true?

\F

No.

Q@ P e v a WW\W/% 6“2"
fa et s 52)

= z (wllivl -0 %C
[

:;O %

> nev =
—~ Lanad

44

Page 11 of 23




3. Why is 6 true?

\ y \V{f/{\‘oﬂf
T hul Wb waboy e e L

Al (=) = — Ry

tos(e)

We can combine these/fwo equations to obtain, Tor u, v € R3:

u-v=| y,((llul|2+ (V)2 - ”V_u”2>
2w
IMF+MﬂF—uv_m;)

= 5(@1 +u? +uz?) + (v12 + v +v32)

((”1 —u1)? + (v2 — u)? + (v — “3)2)> €k
=3 (2uivy + 2uovn + 2uzws)

= ujv1 + uovp + uzv3

» ppn and
ol Yerms

So for any vectors u and v in R3

u-v = uyv; -+ ugvo + uzvs.

An analogous result is true in R™ forany n € N.
This gives us a much easier way of computing the dot product!

47

1.6.3 An easier way to calculate the dot product

It would be useful for computational purposes, to have a way of cal-

culating the dot product from the components of the vectors rather
than from the angle between them.

Remember that our definition of the dot product is

u-v = |lul||lv]| cos(6)
"
and that the law of cosines tel

Is us: j
HV—MF=HMFtJﬂ?fQWMﬂW%M)
which rearranged give-S'/

2+ V12 — v = w2
(f§9 2TV |

46

Answer: 8
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Example: Let u = (0,0,1) and v = (0, 2, 2), as in the example
onp4zFindu-v.

u.v = (0,0,1)(0,2,2)

—

Oxx0 + Ort + IxV puch easie
Example: Letu = (2,3,—-1) and v = (4,5, 0). Calculate u - v
V\Q\Lf, (’Ll%' -’{)-” (Lél g]O)

= L4 4+ 3-§ 4+ (-1)-0
= 4 s+ 0 = L3

Homework: Calculate u-vifu=(3,2,1)and v = (1,1,3)

48




&

Example: Letu=3i+2jandv=2i—j. Findu-v.
Y} - . - R
usv L% 2 (-)
= G__ T = %

Example: letu=2i+2j+3kandv=2i—j—2k. Findu-v.

A= LT A2 ()4 3 (V)
=4 16
- -4

Homework: fu=3i-2j+k,v=i—-j+kandw =j+k,
calculateu-v, v-w, andw - u.
Answers: 6, 0, —1

49

1.6.5 Finding the angle between vectors

Now that we know two different ways to calculate the dot product, we
can combine the two to find the angle between two vectors.

We have

UV = ujv1 + usvo + uzvs
= |lulillv]l cos(6)-

Rearranging the equation gives

u-v _ uivi + ugus + u3v3

fralliivil llalllvil

cos(9) =

Recall that the angle between two vectors is always taken to be in
the interval [0, #].

51

1.6.4 A couple of proofs

We can use this easy way of computing the dot product o prove
some general properties of the dot product. For example:

1. Letu= (uy,up,u3) and v = (v1,vp,v3) be two vectors in R3
and A € R. Then

)\(u . V) =A (ulvl + Uuv2 + u3v3)
== )\ulvl + )\’ug’vg + )\U,3'U3
= (Au)vi + (Aug)vz + (Auz)vz
= (Au) - v.

2. [f 0is the zero vector, we have:

u-0= (u1,’lL2,’LL3)‘(0,0,0)
=u; X04+u x04uzx0
=0

50

Example: Find the angle 6 between the vectors u = (1, -2, 0) and
v=(3,1,-2).

I

= L3I (24 0 ()

= -2 +o0 \
NEIN J5 i

Homework: Find the angle betweenu = (-3,0,1) andv = (2, -2,1).
AnSwar: arccos (3:«/%6)

52
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1.6.6 Acute, obtuse, and right angles

Suppose we have two non-zero, non-parallel vectors u and v, with
angle 6 between them. If @ is acute, ie. in the 1st quadrant, then
cos(8) is positive. If 8 is obtuse, ie. in the 2nd quadrant, then cos(6)
is negative. If # is a right angle, then cos(8) = 0.

We also note that the sign of the dot product is the same as the
sign of cos(#), since u - v = ||ul|||v|| cos(#), and ||u|| and ||v]| are
positive. This means that we can tell from the dot product whether
the angle ¢ is acute or obtuse.

If u and v are non-zero, non-parallel vectors in R2 or R3
and 4 is the angle between them, then

6 is acute if and only if u-v>0
0 is obtuse if and only if u-v<o0
o=g ifandonlyif u.-v=0

53

P

1.6.7 Unit vectors and the dot product

Let's see what happens when we take dot products of pairs of vectors
from the list 1, j, k.

As we saw previously, if we take the dot product between any vector
and itself, the answer will be the magnitude of the vector, squared.
So

i-i=1, j-j=1, andk-k=1
since they are all unit vectors. However,
i-j=0, j-k=0, andk-i=0

since they are pairwise perpendicular.

55

Example: Decide whether the angle between the following pairs of
non-parallel vectors u and v is acute or obtuse:

(@u=(1,-2,00andv={(3,1,-2)

UL s L3 &)+ ol)

o~

T 3-0X0O0 =\ 2o = oacute
b)u=(2,1,1) and v = (-3, -1,2)
wy = (ez) 4 L) + 1
T _e—-l4LT = -S40 P obhue

cyu=1(2,0,1)and v =(-1,-3,2).

L)+ 0 (7)) FLL
Lt o4

wm-v
~

—

-
——

= /La\/\k u,/
WAAW

1.7 Scalar and vector projections

Consider the vectors u and v below, with angle ¢ between them.
In this section, we look at how v can be viewed as the sum of one
vector parallel to u and another vector perpendicular to u.

56
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1.7.1 The scalar resolute

First we obtain the component of v in the direction of u by the follow-
ing construction.

Drop a perpendicular from the tip of v to the line through u . This line
is perpendicular to u and intersects the line through u at the point A.

57

But we know that B i, the unit vector in the direction of u, so

l[ul
[CA|=1-v

The length of this line segment O A is called the scalar resolute of
v on u and is given by

=]
<

Note: ‘The vector we're projecting onto is the one with the hat (the
unit vector).

59

Next we find the length of the line segment OA. From trigonometry
we see that
cos(8) = lo4]
vl

But from the definition of dot product, we have

u-v
cos(f) =
vl
Combining these gives
[OA]  u-v
il Alalllivil

Then cancelling the ||v||s on each side gives

= (1)

58

Example: Letu = (2,-1,3) and v = (4, —1,2). Find the scalar
resolute of v on u and indicate this in a sketch.

-S‘CWW /ﬁOLwR— - {:\, e

\4
—~

2y
~

el

—

—_ A
o~
/‘

il

v = oy 4 (D) 43y
~ ——

182
W
&
N
i\
E

g%

60
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We can also calculate the scalar resolute of u on v. Note that the
two quantities are not equal.

Example: For the same vectors, now find the scalar resolute of u on
v. llustrate this in a sketch.

P
uxu Ve g

B =
Ty %

3

J 4

Homework: Letu = (1,6,—-2) and v = (~2,0,-3). Find the

scalar resolute of v on u and the scalar resolute of u on v.
4 4

Var Vi3

\
N

N

un
~

b=

Answers:

VRNV | Ve
ps

This gives:

projyv = (- v)i

We call this vector the vector resolute of v parallel to u or the
projection of v on u. We denote it by either proj,v or V-

63

1.7.2 Vector resolutes

Let's go back to our diagram

We know that the length of the line segment OA is just the scalar
resolute i - v. If we think of the vector Wl, its direction is the same
as the direction of u. To construct a vector in the direction of u with
the same length as O A we simply multiply |OA| by a unit vector in
the direction of u.

Example: Letu = (3,1,-2) and v = (1,0,5). Find the scalar
resolute of v on u and the projection of v on u.

Y
—

2%

J\C.wlﬁ/ /Q—fOLw"Q -

!

\S$

v
—

e i

—
=

I £ o4 ()Y

J 3 e (S

il
4

S Gl L )
Jre N (4
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Note that we have obtained a negative scalar resolute. This simply Example: Letu = (3,1,-2) and v = (1,0, 5), as in the previous
-
means that the vector OA is in the opposite direction to u, which example. Find the orthogonal projection of v on u.
occurs when the angle between u and v is obtuse. &
E’Om ¥ b,
’ - — v
Yyt oproyet 0,4
=) - - V
vi= T X
\ -
w = (1,0,5)— ( (3 L))
_ — 3
= (L,0,¢) & C’i,Ji, -1
- s A
= 2, ™, h )
Homework: Letu = (1,1,0) and v = (1, —2, 3). Find the scalar Homework: Letu = (1,1,0) and v = (1,—-2,3), as in the pre-
resolute of v on u and the projection of v on u. vious homework question. Find the orthogonal projection of v on u.
Answers: —%, {(-3.-10) Answer: (3,-3,3)
65 67
Back to the diagram: Example: Let u = (—4,0,2) and v = (1,2, —7). Find the follow-
ing, and illustrate with a sketch:
(i) the scalar resolute of uon v
(i) the projectionofuonv
(ii) the orthogonal projection of uon v
e vi= (4-v)i A
! ! b Tyl Meu )L+ 0« 2-(-1)
It is easy to see that the vector v can be written as the sum -~ -—oT \r——’—‘-""”
el (T4 (-t
v=vy+vy “
” = —\& >
We can therefore calculate v as —— _ -
s - X
V) =V~ V“ d‘ ) . _ ~ »
PRt Ay =< (\,L'M) v
~ -~ —~
This vector v_is called the vector resolute of v perpendicular to _ \& 9 )
u, or the orthogonal projection of von u. “ "ﬁ C l { 7/, -
____,/
66 . IS¢ 68
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1.8 Parametric curves
1.8.1 Introduction to parametric curves

Up to this point we have seen vectors of the form u = zi 4 yj where
the components of the vectors have been constant. Suppose now
that these components are functions of time; that is,

r(t) = z(®)i+ y(8)i
where t € R.

Here r is a function from R to R? since for each value of ¢t € R, r(t)
gives a vector in R2. This is thus called a vector valued function of
a real variable. The functions z(¢) and y(¢) are called parametric
equations, since they depend on the parameter ¢, and the resulting
curve that r(¢) traces out in R? is called a parametric curve.

Such vector valued functions are particularly useful in applications,
for example, describing the motion of a particle at any time ¢.

71

1.7.3 Summary

1. The scalar resolute of v on u is:

of
a-v ﬂ____\;—-———*-‘;

\/\/"){‘/

2. The vector resolute of v parallel to u or projection of von u

is: W
v = (@-v)a / >
7 W
,\L,u il

3. The vector resolute of v perpendicular to u or orthogonal
projection of v on u is:

\'s
/-/
VJ_=V—V” YL

=v—(i-v)i "
4

70

Let’s look at a simple example. Let

r() =ti+ %5, forteR.

This means that z(¢) = ¢ and y(¢) = ¢2. To sketch the graph of
r(t), we need to know the values of = and y for different values of

t. A simple way to do this is to construct a table to give us a rough
picture of what the curve looks like.

t [z@)=t]y@)=1¢° T |
-3 -3 9 —3i+9j
-2 -2 4 —2iF4j
—1 1 1 4]

0 0 0 0

1 1 1 itj

2 2 4 21+ 4j

3 3 9 31+ 9j

4 4 16 41 F 16j

valne o

So for each peiat-t we get a different vector, r(z).

72
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We can see the path of the function by following the curve traced out
by the heads of the vectors (indicated by the dotted line). Our job is
to find the equation of this path.

73

So the equation of the path defined by the parametric equations is

y =1z’

Since t € R and z = ¢, the domain of this functionis z € R.

32 -1 1 23

75

1.8.2 Finding the equation of a path

To find the equation of a path defined by parametric equations, we
need to solve the equations simultaneously. The aim is to eliminate
the parameter ¢, to obtain a relationship between z and y.

Consider our example r(t) = ti + t2j. The coordinate in the z
direction is ¢ and the coordinate in the y direction is t2. We put

z=t and y=1¢.

To eliminate the parameter we can simply substitute the first equa-
tion, which says ¢t = z, into the second. Thus:

y=1¢
-
i.e. y=x2

74

Example: Find the equation of the path of a particle whose position
is given by

r(t) = (t> —t)i+3tj, fort>o0.
Sketch the graph of the path, indicating the direction of increasing ¢.

y,:k*% ncgﬁ'

\deoy:  Take Sianples equabion,  Solve for & aat sub
‘\’V*“O L@ft?u?f Qplv‘fuﬁ\bn,

4= ES %’*‘%

= X = (%{)L’ (—%)
- : - ,%,3 — T}aie@a,m; Pﬁ/nbo\a
( o yY-tnpapt Qo 3

‘.J

yf
NS

4= 34) T 59lg-3)
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0 = /(/V(o): cos(0) st ;,\,\(o)}/ = Vi

b aceased fom 0, n= wsk

Lj T st eeases /
e k }\AC/‘CAJI@, U: v ingreaseS
Homewaork: Find the equation of the path of a particle whose posi- Homework: Find the equation of the path of a particle whose posi-
tion is given by r(t) = ti+ (t2 + 1)j, for ¢ > 0. tion is given by r(t) = cos(t)i + 2sin(t)j, fort € R.
Answery =224+ 1forz >0 Answer: z? + %i =1
77 79
Example: Find the equation of the path of a particle whose position In the above example, the path described is a circle, which we could
is given by have simply sketched from the cartesian equation z2 + y2 = 1.
However, the parametric equations give us more information about
r(t) = cos(t)i+sin(t)j, forteR. the motion of the particle:
ketch . . . s :
Sketch the graph of the path o it tells us that at time ¢ = 0 the particle is at the point (1, 0).
L= Lol ( t ) t)”* S ( t J e it tells us the direction of motion is anticlockwise.
This can be seen in two ways:
b3 _ — As t increases from 0, x = cos(t) decreases, while y =
(/057’ % + S & =\ sin(t) increases (consider the cos and sin graphs).
— The point given by r(t) = cos(t)i 4 sin(t)j is simply at
. 2 AW S . . X
- 3 + = ‘ angle ¢ around the unit circle, so as ¢ increases, it moves in
U an anticlockwise direction.
N ! e it teils us that it takes the particle time 2= to travel around the
& "CLQ . Qe (0,0 ) circle, i.e. its period of motion is 2.

78

— This is because r(¢) first returns to its original position when
t = 2m, since cos(t) and sin(t) both have period 2.

80

Y
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Example: Find the equation of the path of a particle whose position
is given by

r(t) = sin(2t)i + cos(2¢)], fort e R.
Sketch the graph of the path.

5 = $ia(2F) y= o (2%)
y;nb(?/k) £ () =)

oL+ T

Example: The motion of a particle is described by
r(t) = (3 — 5cos(2t))i + (1 — 2sin(2t))j, fort > 0.
Determine:
(a) the cartesian equation of the path
(b) the position of the particle at time
iyt=0 iye=7% (iyt=35
{c) the time taken by the particle to return to its original position

(d) the direction of motion.

@) x* 3 Sw(t) g - L5t (24)

Same  crdha | K,\/ " x=3 = =5 cos(2t) gtz - 2 (24)
—’f’;} = 005(2\') %:’\‘-: f;\n(lf)
81 —$ - 83

\(/\QVJ E (,osll?/k‘) 4 S;‘\/\,L ('2/&) = |

Here we have described the same path as the previous example, but
for any given ¢ we may not be at the same point on the path. So for
example, when ¢ = 0, in the first example we are at the point (1, 0)
whereas in the second example, we are at the point (0, 1).

y y

= =0

— /* )

=R =0 . ~a4,,
41‘\

-1 =

[SIE]

(L]

Graph of cos(t)i 4 sin(t)j Graph of sin(2¢)i + cos(2t)j

In the first example, the particle moves anticlockwise with a period of
27, while in the second example, the particle moves clockwise with
a period of .

82
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L) ¢) =0
L(o\’* (3-Sws0) L +(\~—’LS)\AO)'3P
= (3-S(1)) -21(9))’
~ O h‘()—z(i\t (1 ())
3 ~ ¥
) =X
v (%)~ (3 —§w>(1(2))>;+ (\—un(l(%)))'7L
/,O, Coos B ) (\rlca‘ﬁv)-}
= (3-so ) -2y
= 3. - )

W) b= X e

Example: The motion of two particles is given by the equations
ri(t) = ¢+ 1)i+ (2 —4)j and 1) = (21)i+(6t—9)j

Determine:
(a) the point(s) at which the particles collide.

(b) the distance between the particles when ¢ = 2.

@ Bhdu ellide wher R (F) = v (k)
§0f o~ CQ/W« t.

2 ())& (E-wt), = QeI+ (Lt”‘]}

\\\ fGuile

o t+ o= 1k
L =& = =)

T t-dL = 6E-9

(%) = (3-Sws ((52))) b+ (\/LJ,\A@(T&)))'
= (3- ST )|+ (\=2iaT)
=@-5(0) 0+ (\-2-0))
= &\ 4 >

) o Cmplefe rotine apudt elllpre wall tahe
Pwe t=TT

onhcdoclamse

) Nechon of mehon 18

86

t*—tot + 4 =0 S beth
(e-VMe—=) =0 = &= £=9
= b=,
e Yo pr Rl wllide  whee =
Ty 8 af-
() = (e L+ (-4

=25 -3

( Cack s v () = (2 4 o (¢-a) | = 1= 3] )
. ~ UL .
. 88 +l/
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L) s ALk ()= A 3 (43

—

= bt befo 8 (V) ~t //‘3_(7«) 5

Qu.)
v (£,3) v (43— (-9
(V) (
! - =
(3,-%) )
= gk = v
= | (1,20 .

Note: Since the particles collide at the point (2, —3) (when ¢t = 1),
‘the two paths must cross at this point. However, there may be other
points where the paths cross, but where the particles do not collide
since they are not there at the same time. (Imagine two people walk-
ing around a room. Their paths may cross, but they will only bump
into eachother if they are at the same point at the same time.)

Homework: Find the equations of the two paths in this example and
hence find all points where the paths cross.

Arswer ryiy=x°>—6z+5, rg:y=3z-9.
Paths cross at (2, —3) and (7,12).

20
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