
Chapter 1

Functions of Several Variables

1.1 Introduction

A real valued function of n–variables is a function f : D → R, where the domain D is a subset of Rn.
So: for each (x1, x2, . . . , xn) in D, the value of f is a real number f(x1, x2, . . . , xn). For example, the
volume of a cylinder: V = πr2h (i.e. V = F (r, h)) is a function of two variables.

If f is defined by a formula, we usually take the domain D to be as large as possible. For example, if f is a
function defined by f(x, y) = 9− cos (x) + sin(x2 + y2), we have a function of 2 variables defined for all
(x, y) ∈ R2. So D = R2. However, if f is defined by

f(x, y, z) =
1√

x2 + y2 + z2
.

Then f is a function of 3 variables, defined whenever
√
x2 + y2 + z2 6= 0. This is all (x, y, z) ∈ R3 except

for (x, y, z) = (0, 0, 0).

Likewise, a multivariable function of m–variables is a function f : D → Rn, where the domain D is a
subset of Rm. So: for each (x1, x2, . . . , xn) inD, the value of f is a vector f(x1, x2, . . . , xn) ∈ Rn.

For example:

1. An object rotating around the origin in the xy-plane (say at distance 5 from the origin) will have its
position described by the function f(t) = (5 cos (t) , 5 sin (t)). This is a function from R to R2.

2. An object spiralling around the x axis (again at distance 5 from the axis) and travelling at constant speed
might have its position given by f(t) = (t, 5 cos (t) , 5 sin (t)). This function is from R to R2.

1.1.1 Surfaces

The graph of a function f : D ⊂ R2 → R, is the set

{(x, y, z) ∈ R3 : z = f(x, y)}.

This is a surface in R3. The height z = f(x, y) over each point gives the value of f . The equation
ax + by + cz = d represents a plane in R3. This equation can be written less elegantly, expressing z as a
function of x and y, as

z = −a
c
x− b

c
y +

d

c
, provided c 6= 0.

When looking at functions of one variable y = f(x) it is possible to plot (x, y) points to determine the
shape of the graph. In the same way, when looking at a function of two variables z = f(x, y), it is possible
to plot the points (x, y, z) to build up the shape of a surface.
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Example 1.1 Draw the graph (or surface) of the function: z = 9− x2 − y2 (a circular paraboloid).

For

x = 0, y = 0 → z = 9,
x = 0, y = 1 → z = 8,
x = 1, y = 0 → z = 8,
x = 1, y = 1 → z = 7,

etc . . . .

We can eventually plot enough points to find the surface in Figure 1.1.
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Figure 1.1: The paraboloid z = 9− x2 − y2.

This method of drawing a surface is time consuming as we need to calculate many points before being able
to plot the graph. Also some surfaces are quite complex and difficult to draw. We would like another way
of representing the graph so that the surface is easier to draw or visualize.

1.1.2 Contours and level curves

Three dimensional surfaces can be depicted in two–dimensions by means of level curves or contour maps.
If f : D ⊂ R2 → R is a function of two variables, the level curves of f are the subsets of D:

{(x, y) ∈ D : f(x, y) = c},

where c=constant. If f = height, level curves are contours on a contour map. If f = air pressure, level
curves are the isobars on a weather map.

The graph of f can be built up from the level sets: The slice at height z = c, is the level set f(x, y) =
c.

Example 1.2 For the elliptic paraboloid z = x2+y2, for example, the level curves will consist of concentric
circles. For, if we seek the locus of all points on the paraboloid for which z = 1

2 , we solve the equation

1
2

= x2 + y2

which is of course an equation of a circle. The locus of points 0 units above the xy plane is just the origin,
for if z = 0, the equation becomes x2 + y2 = 0, and this implies that x = y = 0.

Example 1.3 For the hyperbolic paraboloid z = x2 − y2 the level curves are hyperbolae except for x2 −
y2 = 0 which is the union of two lines.
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Figure 1.2: Level curves of the elliptic paraboloid z = x2 + y2.
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Figure 1.3: Level curves of the hyberbolic paraboloid z = x2 − y2.

1.1.3 Partial derivatives

These measure the rate of change of a function with respect to one of the variables, keeping all other vari-
ables fixed. Let f : D ⊂ R2 → R be a function of two variables, and (x0, y0) ∈ D.

Definition 1.1 The partial derivative of f with respect to x is:

∂f

∂x
(x0, y0) = lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)
∆x

(i.e. differentiate f with respect to x, treating y as a constant). The partial derivative of f with respect to
y is:

∂f

∂y
(x0, y0) = lim

∆y→0

f(x0, y0 + ∆y)− f(x0, y0)
∆y

(i.e. differentiate f with respect to y, treating x as a constant). Provided, of course, the limits exist.

Referring to Figure 1.4, let us intersect the surface by a vertical plane y = constant, say y = y0, to give a

curve of intersection AP0B. Then
∂f

∂x
(x0, y0) gives the slope of the tangent P0T to this curve at the point

(x0, y0, z0).
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Figure 1.4: Tangent to surface in the x direction.
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Figure 1.5: Tangent to surface in the y direction.
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Similarly,
∂f

∂y
(x0, y0) gives the slope of the tangent Q0T to the curve of intersection BQ0C of the surface

with a vertical plane x = x0 (see figure 1.5). Therefore
∂f

∂x
and

∂f

∂y
give the slope of a surface at a point in

the directions of the x and y axes respectively.

Similarly, for a function f of n variables x1, . . . xn we can define partial derivatives,

∂f

∂x1
= fx1 ,

∂f

∂x2
= fx2 , . . . ,

∂f

∂xn
= fxn .

Exactly the same rules of differentiation apply as for a function of one variable. If we have a function of two

variables f(x, y) we treat y as a constant when calculating
∂f

∂x
, and treat x as a constant when calculating

∂f

∂y
.

1.1.4 Higher partial derivatives

Notice that
∂f

∂x
and

∂f

∂y
are themselves functions of two variables, so they can also be partially differenti-

ated.

For a function of two variables f : D → R there are four possiblilties:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
= fxx,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
= fyy,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
= fyx,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
= fxy.

Higher order partial derivatives are defined similarly:

∂3f

∂x∂y∂x
=

∂

∂x

(
∂

∂y

(
∂f

∂x

))
= fxyx.

Usually, but certainly not always,
∂2f

∂x∂y
=

∂2f

∂y∂x

For the functions we will be encountering the mixed partial derivatives will generally be equal. In fact, this
is true whenever fxy and fyx are continuous.

Example 1.4 Find all the second partial derivatives of

f(x, y) = x3e−2y + y−2 cos (x)

Solution:

∂f

∂x
= 3x2e−2y − y−2 sin (x) ,

∂f

∂y
= −2x3e−2y − 2y−3 cos (x) ,
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∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x

(
3x2e−2y − y−2 sin (x)

)
= 6xe−2y − y−2 cos (x) ,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y

(
−2x3e−2y − 2y−3 cos (x)

)
= 4x3e−2y + 6y−4 cos (x) ,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x

(
−2x3e−2y − 2y−3 cos (x)

)
= −6x2e−2y + 2y−3 sin (x) ,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
=

∂

∂y

(
3x2e−2y − y−2 sin (x)

)
= −6x2e−2y + 2y−3 sin (x) .

1.1.5 Differentiable functions

For a function of one variable f(x) is differentiable at x0 means:

1. The graph of f has a tangent line at x = x0 (see Figure 1.6). The equation of this tangent line is

aaaaaaaaaaa x0

y

xx0+Δx

error=f(x0+Δx)-f(x)-f ’(x)⋅Δx

Δx

Δf

tangent line
y=f(x)

Figure 1.6: A differentiable function has a tangent line.

y − y0 = f ′(x0)(x− x0).

2. The change in f near x0 is well approximated by a linear function:

∆f = f ′(x0)∆x+ error,

where the error is small compared with ∆x or more precisely: error
∆x → 0 as ∆x→ 0.

These ideas can be generalized to a function of two variables. A function f is differentiable at (x0, y0)
means that f has a well defined tangent plane at (x0, y0). All tangents to the surface at (x0, y0) lie in the
one plane (see Figure 1.7). Or more formally

Definition 1.2 A function f(x, y) if differentiable at (x0, y0) if the change in f near (x0, y0) is well ap-
proximated by a linear function:

∆f = fx(x0, y0)∆x+ fy(x0, y0)∆y + error,

where
error√

(∆x)2 + (∆y)2
→ 0 as (∆x,∆y)→ (0, 0). Here

∆f = f(x0 + ∆x, y0 + ∆y)− f(x0, y0).

The equation of the tangent plane to z = f(x, y) at (x0, y0) is

z − z0 =
∂f

∂x
(x0, y0)∆x+

∂f

∂y
(x0, y0)∆y



1.1 Introduction 7
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Figure 1.7: The tangent plane and normal line to the surface z = f(x, y).

or
z = f(x0, y0) +

∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

Example 1.5 Find the cartesian equation of the tangent plane to the surface

z = 1− x2 − y2

at the point (1, 2,−4).

Solution: We first find the partial derivatives

∂z

∂x
= −2x,

∂z

∂y
= −2y,

At (1, 2,−4)
∂z

∂x
= −2,

∂z

∂y
= −4.

Therefore by using the formula the tangent plane is

z = −4 + (x− 1)(−2) + (y − 2)(−4),
= −4− 2x+ 2− 4y + 8,

z = 6− 2x− 4y.

If we rearrange this equation into the usual form for a plane we have

x
∂f

∂x
(x0, y0) + y

∂f

∂y
(x0, y0)− z = −f(x0, y0) + x0

∂f

∂x
(x0, y0) + y0

∂f

∂y
(x0, y0)

so the normal vector for the tangent plane is

n = (fx(x0, y0), fy(x0, y0),−1) .

From this we can find the equation to the normal line to the tangent plane at (x0, y0) as

x− x0

fx(x0, y0)
=

y − y0

fy(x0, y0)
=
z − z0

−1

or
(x, y, z) = (x0, y0, z0) + t (fx(x0, y0), fy(x0, y0),−1) .
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1.1.6 Errors and approximations

If the function z = f(x, y) is differentiable at (x0, y0), then for (x, y) near (x0, y0)

f(x, y) ≈ f(x0, y0) + fx(x0, y0)∆x+ fy(x0, y0)∆y.

where ∆x = x− x0, ∆y = y − y0. The right hand side of this equation is called the linear approximation
to f near (x0, y0). This equation may also be written as

∆f ≈ fx∆x+ fy∆y

which is sometimes written as
df = fx dx+ fy dy

which is called the differential of f.

Some applications of this linear approximation to f are

1. Estimating values of functions.

2. Estimating errors in measurements.

Example 1.6 Estimate the value of

f(x, y) =
√

1− x+ 2y when x = 0.01, y = 0.02.

Solution: Use the linear approximation to f at (0, 0):

fx =
∂f

∂x
=

1
2

(1− x+ 2y)−1/2(−1)

fy =
∂f

∂y
=

1
2

(1− x+ 2y)−1/2(2)

At (0, 0) : fx = − 1
2 , fy = 1.

The linear approximation for (x, y) near (0, 0) is

f(x, y) ≈ f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0)

= 1− 1
2
x+ y

Taking x = 0.01, y = 0.02 gives

f(0.01, 0.02) ≈ 1− 1
2

(0.01) + (.02)

= 1.015

The size of the error depends on the second order derivatives of f .

1.2 Space Curves

1.2.1 Vector valued functions

A curve in Rn is a vector valued function

c : [a, b]→ Rn

where c(t) = (c1(t), c2(t), . . . , cn(t)). You can think of c(t) as the position at time t. For example the
vector function c(t) = (cos (t) , sin (t)) describes the unit circle in R2. This is equivalent to the parametric
equations x = cos (t) , y = sin (t) , t ∈ R.
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The derivative of c is
dc
dt

= c′(t) = (c′1(t), c′2(t), . . . , c′n(t))

that is we differentiate each component of c. The derivative can also be defined as the limit

c′(t) = lim
∆t

c(t+ ∆t)− c(t)
∆t

.

The derivative gives the tangent vector to the curve at the point c(t).

If c(t) represents the position at time t,

then c′(t) =
dc
dt

= velocity vector,

and c′′(t) =
d2c
dt2

= acceleration vector,

at time t.

For example if c(t) = (cos (t) , sin (t)) represents the unit circle in R2 then

c′(t) = (− sin (t) , cos (t)) = velocity,
c′′(t) = (− cos (t) ,− sin (t)) = acceleration.

aaa

x

y

t

c(t)

c’(t)
x2+y2=1

c’’(t)

Figure 1.8: The velocity and acceleration of c(t) = (cos (t) , sin (t)).

1.2.2 The chain rule

If y is a differentiable function of x i.e. y = f(x) and x is a differentiable function of t i.e. x = g(t), then
y is a function of t

y = f(g(t)) and
dy

dt
=
dy

dx

dx

dt

If z is a function of x and y i.e. z = f(x, y) and x and y are both functions of the same variable t, i.e.

f = f(x, y) and x = g(t), y = h(t)
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then z is a function of t:
z = f

(
g(t), h(t)

)
.

For example, if z = x2 − y2, x = sin (t) and y = cos (t) then z = sin2 (t)− cos2 (t).

We would like to be able to find the rate of change of f with respect to t. This can be found from the chain
rule for two variables

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Example 1.7 If z = x2 − y2, x = sin (t) , y = cos (t), find
dz

dt
where t = π

3 .

Solution: We can do this by two methods the second can be used to check our first answer.

Method 1. Using the chain rule

∂z

∂x
= 2x,

∂z

∂y
= −2y,

dx

dt
= cos (t) ,

dy

dt
= − sin (t) ,

At t = π
3 ,

x = sin(t) =
√

3
2

and y = cos(t) =
1
2
.

Therefore

dz

dt
=

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= (2x)(cos (t)) + (−2y)(− sin (t))
= 2x cos (t) + 2y sin (t)

= 2
√

3
2
× 1

2
+ 2

1
2
×
√

3
2

=
√

3.

Method 2. Using substitution to find z = z(t)

z = x2 − y2 = sin2 (t)− cos2 (t) .

Therefore

dz

dt
= 2 sin (t) cos (t)− 2 cos (t) (− sin (t)) = 4 sin (t) cos (t) = 4

√
3

2
× 1

2
=
√

3,

which is the same answer we obtained by method 1.

The chain rule can be used for functions of more than two variables:

Given a function f(x1, x2, . . . , xn) defined at points of Rn, consider the values of f along a curve

x1 = x1(t), x2 = x2(t), . . . , xn = xn(t).

Here t ∈ R is a parameter along the curve (e.g. time or arc length).

Let w = f(x1, x2, . . . , xn) = function of t. If f, x1, x2, . . . , xn are differentiable, then

dw

dt
=

∂w

∂x1

dx

dt
+ . . .

∂w

∂xn

dxn
dt

where each
∂w

∂xi
is evaluated at (x1, x2, . . . , xn).



1.3 Gradient Vectors and Directional Derivatives 11

1.3 Gradient Vectors and Directional Derivatives

1.3.1 Gradient and Gradient vector

Consider the function of two variables f(x, y). Its graph represents a surface in three dimensions. If x and
y are themselves a function of another variable t then (x(t), y(t)) is a curve C = c(t) in the xy plane. The
function f(x(t), y(t)) will then represent a curve on the surface of f(x, y) directly above curve C = c(t)
in the xy plane.

z

yx

z=f(x,y)

c(t), curve
in x-y plane

curve on surface

Figure 1.9: The curve on the surface of z = f(x, y) directly above the curve C = c(t) in the xy plane.

The chain rule expresses
df

dt
along the curve C as the dot product of the two vectors

v =
(
dx

dt
,
dy

dt

)
and ∇f =

(
∂f

∂x
,
∂f

∂y

)
.

then

v · ∇f =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
=
df

dt

i.e. the chain rule. The two vectors v and ∇f have only two components therefore they lie in the xy
plane.

v is tangent to the curve (x(t), y(t)) and is called the tangent vector.

∇f is called the gradient vector of f .

These ideas can also be extended for functions of more than two variables.

Definition 1.3 If f(x1, x2, . . . , xn) is a function of n variables then the gradient of f is the vector valued
function

∇f(x1, x2, . . . , xn) =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Notice that if f : Rn → R, then ∇f : Rn → Rn. This is an example of a “vector field” on Rn.
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1.3.2 Directional derivatives

The partial derivatives fx and fy give the rate of change of f in directions parallel to the x and y axis. What
about other directions?

Let P0(x0, y0) be a fixed point in the xy–plane. Let l be a line in the xy–plane that passes through P0. The
point P (x, y) moves along the line l. Directly above it, the point Q moves along the surface z = f(x, y),
tracing out a curve C. What is the rate at which the z–coordinate of Q changes with the distance s between
P0 and P?

z

yx

z=f(x,y)

line in
x-y plane

curve on surface

Q0

Q

P0

Ps

Figure 1.10: Curve on the surface of z = f(x, y) above the line l.

Let u be the unit vector
u = u1i + u2j

with initial point P0(x0, y0) and pointing in the direction of motion of P (x, y). Then

−−→
P0P = su

(x− x0)i + (y − y0)j = su1i + su2j

therefore
x = x0 + su1 and y = y0 + su2.

Hence

z = f(x, y)
= f(x0 + su1, y0 + su2).

By the chain rule,

dz

ds
=

∂z

∂x

dw

ds
+
∂z

∂y

dy

ds

= fxu1 + fyu2

= ∇f · u.
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Thus, the rate of change of f(x, y) at (x0, y0) in the direction of the unit vector u is given by the directional
derivative

Duf(x0, y0) = ∇f(x0, y0) · u

This can be extended to functions of n variables.

Let

• f(x1, . . . , xn) be a differentiable function of n variables,

• u be a unit vector in Rn and

• P be a point in Rn.

Definition 1.4 The directional derivative of f in the direction of u at P is:

Duf(P ) = lim
t→0

f(P + tu)− f(P )
t

=
d

dt
f(P + tu)

∣∣
t=0

= rate of change of f in the direction of u.

Taking x(t) = P + tu, dxdt = u in the chain rule

Duf =
d

dt
f(x(t)) = ∇f · dx

dt
= ∇f · u.

Thus
Duf(P ) = ∇f(P ) · u.

Example 1.8 Find the rate of change of

f = 1− x2

4
− y2

4

at the point (1, 0) in the direction of the vectors:

(i) a: a unit vector 45◦ to the x–axis,

(ii) b = (0, 1).

From the previous example the gradient vector at (1, 0) is∇f = (− 1
2 , 0)

(i) Unit vector: u = 1
|a|a = 1√

2
(1, 1). Therefore the directional derivative is

Duf =
1√
2

(1, 1) · (−1
2
, 0) = − 1

2
√

2

(ii) Unit vector: u = b = (0, 1). Therefore the directional derivative is

Duf = (0, 1) · (−1
2
, 0) = 0

i.e. there is no change in f in this direction.
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1.3.3 Directions of fastest increase and decrease

Given f(x1, . . . , xn) a differentiable function of n variables, and a point P in Rn, we can consider Duf as
a function of the unit vector u.

If ∇f 6= 0, then the directional derivative atP has a maximum value of ||∇f || in the direction of ∇f . That

is the maximum rate of increase in f is ||∇f || in the direction of u =
∇f
||∇f ||

.

The directional derivative at P has a minimum value of −||∇f || in the direction of −∇f . That is the

maximum rate of decrease of f at P is given by−||∇f || and is in the dirction of−∇f or u =
−∇f
||∇f ||

.

1.3.4 Level curves and gradient

Let x = x(t), y = y(t) be a level curve of f(x, y) so that

f(x(t), y(t)) = const.

Then by the chain rule
df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0.

So
∇f · v = 0

hence ∇f(x0, y0) is normal to the level curve at (x0, y0).

-4 -2 2 4

-4

-2

2

4

x

y

Figure 1.11: The gradient vector∇f is perpendicular to the level curves.
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Example 1.9 Find the level curve of f = x2 − y2 corresponding to f = 1 and sketch the gradient vector
at the points (1, 0), (−1, 0). Solution: The level curve is 1 = x2 − y2 or y = ±

√
x2 − 1

∇f = (2x,−2y),
at (1, 0) ∇f = (2, 0) = 2i,

(−1, 0) ∇f = (−2, 0) = −2i.

The gradient vector is sketched in Figure 1.12.

-4 -2 2 4

-4

-2

2

4

x

y

∇f∇f

Figure 1.12: The level curves and gradient vector∇f of f = x2 − y2.

In general, if f(x1, . . . , xn) is differentiable at a point P and f(P ) = c, then ∇f(P ) is perpendicular to
the level set f(x) = c containing P .

1.3.5 Tangent planes to surfaces

Theorem 1.5 If F (x, y, z) is differentiable, ∇F (P ) 6= 0, and F (P ) = c, then the level set F (x, y, z) = c
has well–defined tangent plane at P which is orthogonal to∇F (P ).

If ∇F = 0 or ∇F is not defined at P, there generally won’t be a nice tangent plane. For example the point
at the tip of the cone in Figure 1.13.

aaaa

Figure 1.13: A point where there is no nice tangent plane.

Therefore as ∇F is orthogonal to the tangent plane, the equation for the tangent plane at P is given
by

∇F (P ) · (x− P ) = 0
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and the equation for the normal line S = {(x, y, z) : F (x, y, z) = c} at P is

x(t) = P + t∇F (P ).

These equations also work in the n–dimensional case where

S = hypersurface : F (x1, . . . , xn) = c (dimension n− 1).

In the three dimensional case for F (x, y, z) = constant these equations can also be written:

The tangent plane at P = (x0, y0, z0) is

∂f

∂x
(P )(x− x0) +

∂f

∂y
(P )(y − y0) +

∂f

∂z
(P )(z − z0) = 0.

The normal line at P is

x(t) = x0 + t
∂f

∂x
(P )

y(t) = y0 + t
∂f

∂y
(P )

z(t) = z0 + t
∂f

∂z
(P ).

1.4 Extreme Values and Saddle Point

1.4.1 Maxima and minima: Critical points

Let f(x1, . . . , xn) = f(x) be a function of n variables. Let x = (x1, . . . , xn) ∈ Rn.

Definition 1.6 f has a local maximum at x0 if f(x) ≤ f(x0) for all x near x0.

f has a local minimum at x0 if f(x) ≥ f(x0) for all x near x0.

Theorem 1.7 If f(x1, . . . , xn) has a local maximum or local minimum at P, then either:

(i)
∂f

∂x1
=

∂f

∂x2
= . . . =

∂f

∂xn
= 0 at P (i.e. ∇f(P ) = 0), or

(ii) One or more of the partial derivatives
∂f

∂x1
, . . . ,

∂f

∂xn
does not exist at P.

Definition 1.8 We say P is a critical point of f if ∇f(P ) = 0.

Note: Not all critical points are local maxima and minima.

e.g. (i) For the function f(x, y) = x2 + y2 the critical points satisfy:

fx = 0 and fy = 0

so
2x = 0 and 2y = 0.

Therefore x = 0 and y = 0 is the only critical point of f and this is a global minimum.

(ii) For the functions such as f(x, y) = y2 − x2 the critical points satisfy:
fx = 0, fy = 0

so −2x = 0, 2y = 0.
Therefore x = 0, y = 0 is the only critical point of f and this is not a local maximum or local minimum but a saddle point.
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x

z

y

Figure 1.14: Paraboloid f(x, y) = x2 + y2.

aaaa

Figure 1.15: Typical saddle point.

Example 1.10 Find the critical point(s) of the function:

g(x, y) = x2 + 6xy + 4y2 + 2x− 4y.

Solution: We need to solve

∂g

∂x
= 0

2x+ 6y + 2 = 0
x+ 3y = −1

and

∂g

∂y
= 0

8y + 6x− 4 = 0
4y + 3x = 2

[
1 3
3 4

∣∣∣ −1
2

]
∼
[

1 3
0 −5

∣∣∣ −1
5

]
.

Therefore
−5y = 5 ⇒ y = −1,

and
x+ 3y = −1 ⇒ x = 2.

Therefore there is a critical point at (2,−1).
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1.4.2 Classification of critical points

Let (x0, y0) be a critical point of f(x, y) so that

fx(x0, y0) = fy(x0, y0) = 0

and assume f has continuous second order derivatives near (x0, y0).

H =
[
fxx fxy
fxy fyy

]
, evaluated at (x0, y0) = X0,

and is called the Hessian of f at (x0, y0).

In order to determine the type of critical points we need to look more closely at H.

Second Derivative Test: Let (x0, y0) be a critical point of f(x, y) so that

fx(x0, y0) = fy(x0, y0) = 0

and assume f has continuous second order derivatives near (x0, y0). Then there are four cases depending
upon det(H) and fxx(x0, y0):

1. If det (H) =
∣∣∣∣ fxx fxy
fxy fyy

∣∣∣∣ > 0 at (x0, y0) and fxx(x0, y0) > 0, then a minimum occurs at (x0, y0).

2. If det (H) > 0 at (x0, y0) and fxx(x0, y0) < 0, then a maximum occurs at (x0, y0).

3. If det (H) < 0 then a saddle point occurs at (x0, y0).

4. If det (H) = 0 then the test is inconclusive and the nature of the critical point (x0, y0) can’t be
determined from the second derivatives. In order to determine the type of critical point it is necessary
to study higher order derivatives. The functions f(x, y) = x4 + y4, f(x, y) = −x4 − y4, f(x, y) =
x4 − y4 all have a critical points at (0, 0) with det H = 0. But these points are a local minimum, a
local maximum and a saddle point respectively.

Example 1.11 Find and classify the critical points of

f(x, y) = x2y − x2 − 1
3
y3.

Solution: First finding the critical points

fx = 2xy − 2x, fy = x2 − y2,
2x(y − 1) = 0, and x2 − y2 = 0,
x = 0 or y = 1 and x2 = y2.

Therefore for x = 0, y2 = 0⇒ y = 0 and for y = 1, x2 = 1⇒ x = ±1.
Thus we have three critical points (0, 0), (1, 1) and (−1, 1).
Checking for type of critical points

fxx = 2y − 2,
fyy = −2y,
fxy = 2x.

⇒ H =
[

2y − 2 −2y
−2y 2x

]

At (0, 0), det H = (−2)(0)− 02 = 0 therefore the test is inconclusive.
At (1, 1), det H = (0)(−2)− 22 = −4 therefore (1,1) is a saddle point.
At (−1, 1), det H = (0)(−2)− (−2)2 = −4 therefore (-1,1) is a saddle point.

1.4.3 Existence of maxima and minima

In general, global maxima and global minima need not exist.
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For functions of one variable: A continuous function f : [a, b]→ R defined on a closed, bounded interval
has a global maximum and global minimum in [a, b]. If f is differentiable, the maximum or minimum may
occur at a critical point or boundary point a or b.

Similarly for functions of n variables: If f : Rn → R is continuous, and K is a closed, bounded subset
of Rn, then f has a global maximum and minimum on K. If f is differentiable then the maximum and
minimum may occur at a critical point or boundary point of K. (The proof of this can be found in real
analysis textbooks.)

Definition 1.9 1. K ⊂ Rn is bounded if it lies within a finite distance from the origin.
(i.e. There exists c, such that ||x|| < c for all x ∈ K.)

2. x ∈ Rn is a boundary point of K if there are points arbitrarily close to x which are in K, and points
arbitrarily close to x which are not in K (see Figure 1.16).

3. K is closed if it contains all its boundary points.

aaaa

interior points

boundary points

Figure 1.16: Boundary points in a set.

Examples:

1. Closed disc x2 + y2 ≤ r2 is closed and bounded (see Figure 1.17).

boundary points
= circle x2+y2=r2

Figure 1.17: Closed disc x2 + y2 ≤ r2.

2. Open disc x2 + y2 < r2 is bounded but not closed (see Figure 1.18).

Figure 1.18: Open disc x2 + y2 < r2.

3. Half–plane {(x, y) : y ≥ 0} is closed but not bounded (see Figure 1.19).



20 Functions of Several Variables

x

y

Figure 1.19: Half–plane {(x, y) : y ≥ 0}.

1.5 Multiple Integrals

1.5.1 One Variable

Recall from that ∫ b

a

f(x) dx

gives the area between the graph y = f(x) and the x-axis for a ≤ x ≤ b (if f(x) ≥ 0). We approximate
the area under the graph by rectangular strips.

curaa

y=f(x)y

x
Δxi

xi

f(xi)

a b

Figure 1.20: Dividing a region into rectangular strips.

Definition 1.10 The sum ∑
i

f(xi)∆xi

is called a Riemann sum.

Then ∫ b

a

f(x) dx = lim
max|∆xi|→0

(∑
i

f(xi)∆xi

)
.

Question How can we calculate the volume of the region in R3 lying above a setD in the x–y plane (z = 0)
and below the graph z = f(x, y)?

One approach is to divide the region into small rectangular boxes and add up the volumes of all the boxes.
Then take a limit. The result will be called integral of f over D, and written∫∫

D

f dA.
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curaa

y

x ΔAi=ΔxiΔyi

z
(xi, yi, f(xi,yi))

volume
=area x height
=ΔAi f(xi,yi)

z=f(x,y)

Figure 1.21: Dividing a region into rectangular boxes

curaa

y

x

D
rectangle Ri

point (xi,yi)

Figure 1.22: Dividing D into rectangles.

1.5.2 Definition of double integral

Let D be a bounded region in R2, f : D → R a function of two variables defined on D. Define the integral
of f over D using Riemann sums in the following way.

1. Cover D by a rectangular grid.

2. Let A1, A2, . . . , Ak be the rectangles inside D. Then

∆Ai = area of Ai = ∆xi∆yi

(xi, yi) = point inside Ai.

3. Now look at Riemann sums

k∑
i=1

f(xi, yi)∆Ai =
k∑
i=1

f(xi, yi)∆xi∆yi

Let |A| be the maximum length of edges in the rectangles Ai.

Theorem 1.11 If f is continuous on D, and D is bounded by curves of finite total length, then all such
Riemann sums approach the same limit provided |A| → c.
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So we can define ∫∫
D

f dA = lim
|A|→0

k∑
i=1

f(xi, yi)∆Ai.

This is called Riemann integral of f over the region D, also written∫∫
D

f dx dy.

1.5.3 Properties of double integrals

1.
∫∫
D

(f + g) dA =
∫∫
D

f dA+
∫∫
D

g dA.

2.
∫∫
D

cf dA = c

∫∫
D

f dA, where c is a constant.

3.
∫∫
D

f dA ≥
∫∫
D

g dA, if f ≥ g at all points of D.

4.
∫∫
D

f dA =
∫∫
D1

f dA+
∫∫
D2

f dA, ifD is the union of two non–overlapping regionsD1 andD2.

e.g.

D1 D2

D

1.5.4 Interpretations of double integrals

1. If f : D → R is continuous, f(x, y) ≥ 0 then
∫∫
D

f dA is the volume of solid lying above region D

in the xy–plane and below the graph of f .

2. If f(x, y) = 1 for all x, y then we obtain the area of D.

Area(D) =
∫∫
D

1 dx dy.

3. Integral of density is the total mass
Integral of charge density is the total charge.

1.5.5 Double Integrals over Rectangular Regions

The partial derivatives of a function f(x, y) are calculated by holding one of the variables fixed and differ-
entiating with respect to the other variable. Consider the reverse of differentiation, partial integration. The
symbol ∫ b

a

f(x, y) dx

is a partial definite integral with respect to x. It is evaluated by holding y fixed and integrating with respect
to x.
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This being the case, we can consider the following types of calculations:∫ d

c

[∫ b

a

f(x, y) dx

]
dy

∫ b

a

[∫ d

c

f(x, y) dy

]
dx

which are respectively written ∫ d

c

∫ b

a

f(x, y) dx dy∫ b

a

∫ d

c

f(x, y) dy dx

These are examples of iterated (in this case, double) integrals.

Example 1.12 Use a double integral to find the volume of the solid that is bounded above by the plane
z = 4− x− y and below by the rectangle

R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}

Solution: The volume we want is shown in Figure 1.23. The volume is given by

z

y
x

z=4−x−y

2

1

4

Figure 1.23: Volume under the plane z = 4− x− y.

V =
∫ 2

0

∫ 1

0

(4− x− y) dx dy

=
∫ 2

0

[
4x− 1

2
x2 − xy

]1

0

dy

=
∫ 2

0

(
7
2
− y
)
dx dy

=
[

7
2
y − 1

2
y2

]1

0

= 5

Alternatively,

V =
∫ 1

0

∫ 2

0

(4− x− y) dy dx = 5.
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1.5.6 Double Integrals over Non-rectangular Regions

The regions involved in double integrals can be divided into groups according to their boundaries.

Type 1 Region:

aaaaaaaaaaa

y

xa b

y=g2(x)

D

y=g1(x)

We see that D is the region defined by

g1(x) ≤ y ≤ g2(x) where a ≤ x ≤ b.

Here ∫∫
D

f dA =
∫ x=b

x=a

∫ y=g2(x)

y=g1(x)

f(x, y) dy dx

i.e.

1. Integrate f(x, y) with respect to y, keeping x fixed.

2. Integrate the result with respect to x from a to b.

Type 2 Region:

aaaaaaaaaaa

y

x

c

x=h2(y)

Dx=h1(y)

d

N ow D is the region defined by

h1(y) ≤ x ≤ h2(y) where c ≤ y ≤ d.

Here ∫∫
D

f dA =
∫ y=d

y=c

∫ x=h2(y)

x=h1(y)

f(x, y) dx dy

i.e.

1. Integrate f(x, y) with respect to x, keeping y fixed.

2. Integrate the result with respect to y from c to d.

Example 1.13 Evaluate
∫∫
D

(y3 + 4x) dA where D is the region enclosed by the graphs x = y2 and

x = 2y.
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Solution: First, find the intersection points of these curves and sketch D.

x = y2 = 2y
y2 − 2y = 0
y(y − 2) = 0

y = 0 or y = 2
x = 0, x = 4 respectively.

1 2 3 4

0.5

1

1.5

2

x

y

This can be evaluated in two ways:

1. As a type 2 region where the region D is described as

y2 ≤ x ≤ 2y, 0 ≤ y ≤ 2

So that the integral becomes∫∫
D

(y3 + 4x) dA =
∫ 2

0

(∫ 2y

y2
(y3 + 4x) dx

)
dy

=
∫ 2

0

[
xy3 + 2x2

]x=2y

x=y2 dy

=
∫ 2

0

(
2y4 + 8y2 − y5 − 2y4

)
dy

=
∫ 2

0

(
8y2 − y5

)
dy

=
[

8
3
y3 − y6

6

]2

0

=
32
3

2. As a type 1 integral
1
2x ≤ y ≤

√
x,

0 ≤ x ≤ 4.

The integral is then (using opposite order of integration)∫ 4

0

(∫ √x
1
2x

(y3 + 4x) dy

)
dx.

1.5.7 Changing the Order of Integration

As we have seen double integrals can be evaluated by integrating with respect to x and then y or with respect
to y and then x. It may be that one of these methods gives a simpler expression to integrate and we may
wish to change the order of integration to take advantage of this.

Example 1.14 Evaluate the integral ∫ 1

0

∫ 1

y

ex
2
dx dy

Solution: We can’t evaluate the inner integral
∫ 1

y
ex

2
dx explicitly. So we need to convert this to a double

integral and change the order of integration. First find the region of integration D.
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We have y ≤ x ≤ 1, 0 ≤ y ≤ 1. So D is the triangle bounded by y = 0 below, by x = 1 on the right,
and by x = y as the hypotenuse on the left. We can rewrite the region as

0 ≤ y ≤ x, 0 ≤ x ≤ 1.

Therefore the integral is ∫ 1

0

∫ x

0

ex
2
dy dx

This is a much simpler integral since x can be considered a constant in the inner integral. Therefore we have∫ 1

0

∫ x

0

ex
2
dy dx =

∫ 1

0

[
yex

2
]x

0
dx

=
∫ 1

0

(
xex

2
)
dx

This can now be done using the substitution u = x2 and du = 2x dx.

Therefore
∫
xex

2
dx =

∫
1
2
eu du = eu = ex

2

=
[

1
2
ex

2
]1

0

=
1
2

(e− 1).

1.5.8 Triple Integrals

Just as a double integral can be evaluated by two single integrations, a triple integral can be evaluated by
three single integrations. If a region D in R3 is defined by the inequalities

a ≤ x ≤ b
c ≤ y ≤ d
k ≤ z ≤ l

and f is continuous on the region, then∫∫∫
D

=
∫ b

a

∫ d

c

∫ l

k

f(x, y, z) dz dy dx

=
∫ d

c

∫ b

a

∫ l

k

f(x, y, z) dz dx dy

=
∫ b

a

∫ l

k

∫ d

c

f(x, y, z) dy dz dx

=
∫ l

k

∫ b

a

∫ d

c

f(x, y, z) dy dx dz

=
∫ l

k

∫ d

c

∫ b

a

f(x, y, z) dx dy dz

=
∫ d

c

∫ l

k

∫ b

a

f(x, y, z) dx dz dy

Example 1.15 Evaluate
∫∫∫

G

12xy2z3 dV over the region G defined by the inequalities

−1 ≤ x ≤ 2
0 ≤ y ≤ 3
0 ≤ z ≤ 2
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Solution: There are 6 possible forms of the integral to use. We choose∫ 2

−1

∫ 3

0

∫ 2

0

12xy2z3 dz dy dx =
∫ 2

−1

∫ 3

0

[
3xy2z4

]2
0
dy dx

=
∫ 2

−1

∫ 3

0

48xy2 dy dx

=
∫ 2

−1

432x dx

=
[
216x2

]2
−1

= 648

The other 5 possible forms give the same result.

We can also evaluate triple integrals over more general regions. In fact if f(x, y, z) = 1 then the triple

integral
∫∫∫

G

f(x, y, z) dV will give the volume of the region G.
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