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Introduction

Symmetric functions are functions of multiple variables which remain unchanged
under any permutation of the variables. Formally, if X = {xi}∞i=1 and f is a formal
power series in X, then f is a symmetric function if for all n ≥ 1 and π ∈ Sn we
have π(f ) = f (where π is an element of a symmetric group which permutes the
variables as π(xi) = xπ(i)).
Symmetric functions arise in a number of settings in algebra, geometry, topology,
combinatorics and more; but they are also fun mathematical objects in their own
right.
There is an interesting zoo of classes of symmetric functions, all of which are
indexed by partitions, so it will be useful to note the following.
Definition: A partition is a sequence

λ = (λ1, λ2, ..., λk, ...)
of non-negative integers such that λ1 ≥ λ2 ≥ ... ≥ λk ≥ ... with finitely many
non-zero terms.
Partitions can be represented geometrically with a stack of boxes called a Ferrers
Diagram where the bottom row has λ1 boxes, the second bottom row has λ2 boxes
and so on. Below is the Ferrers diagram for the partition λ = (3, 2, 2)

Schur Functions

Schur functions are a particular set of symmetric functions that arise in rep-
resentation theory as they are the characters of the polynomial irreducible
representations of the general linear groups.
To define Schur functions we introduce a special filling T of a Ferrers dia-
gram with positive integers and write xT to denote the monomial given by
xT =

∏
i∈T xi, the filling is called a Semistandard Tableaux and the entries in

the columns are strictly increasing from bottom to top and the entries in the rows
are weakly increasing from left to right. We write SST (λ) for the set of semis-
tandard tableaux of shape λ with entries from the positive integers. The content
of a tableaux is the sequence {µ∞i=1} where µi is the number of i’s in the tableaux.

Definition: For any partition λ

sλ =
∑

T∈SST (λ)
xT

is the Schur Function indexed by λ.

Example: A few terms of the schur function s(2,1) and the corresponding Semis-
tandard Tableaux:

s(2,1) = x21x2 + x1x
2
2 + 2x1x2x3 + x21x3 + x1x

2
3 + ...
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Theorem: Schur functions are symmetric.
Proof. We need to show that for any λ and all π ∈ Sn, π(sλ) = sλ. Notice that
by construction each monomial in a Schur function has the same degree. Now
suppose π = (i, i + 1) and choose a monomial xµ11 ...x

µn
n . By definition the coef-

ficient of this term in sλ is the number of semistandard tableaux of shape λ and
content µ1, ..., µn. Similarly the coefficient of this term in π(sλ) is the coefficient
of xµ11 ...x

µi+1
i x

µi
i+1...x

µn
n in sλ. By definition this is the number of semistandard

tableaux with content µ1, ..., µi−1, µi+1, µi, ..., µn. Given a semistandard tableaux
corresponding to this monomial, we say that i is paired if there is an i + 1 in it’s
column and free otherwise. The operation βi on semistandard tableaux T which,

row by row, replaces a free i’s and b free i + 1’s with b free i’s and a free i + 1’s results in a
semistandard tableaux βi(T ). Notice that the number of i’s in βi(T ) is the number of paired
i + 1’s in T plus the number of free i + 1’s in T , this number is µi + 1. Similarly the number
of i + 1’s in βi(T ) is µi. Hence βi(T ) has content µ1, ..., µi−1, µi+1, µi, ..., µn. Next notice
that the operation βi doesn’t change which entries are free so if we applied βi to βi(T )
we would change the tableaux back to the original T . This tells us that βi is a bijection
between semistandard tableaux of content µ1, ..., µn and semistandard tableaux of content
µ1, ..., µi−1, µi+1, µi, ..., µn. This bijection tells us that xµ11 ...x

µi+1
i x

µi
i+1...x

µn
n in π(sλ) has the

same coefficient as xµ11 ...x
µn
n in sλ . Hence π(sλ) = sλ. As any permutation can be written

as a composition of simple transpositions the result follows for any permutation.

Theorem: For all k ≥ 0, the set {sλ |
∑∞
i=1 λi = k} is a basis for the set of all symmetric

functions of homogenous degree k.

The above theorem presents an interesting problem: as any symmetric function of homoge-
nous degree can be expressed as a linear combination of Schur functions. Consider for
any two partitions µ and ν the product sµsν. As the product of two homogenous symmetric
functions it is also a homogenous symmetric function and so by the above theorem can be
expressed as a linear combination of Schur functions. The Littlewood-Richardson theorem
tells us which Schur functions are in the linear combination and that the coefficients are
positive integers.

Littlewood-Richardson Rule

To state the rule we first need to build on what we know about tableaux. A semistandard
skew tableaux λ/µ is the diagram of λ with the µ boxes removed. For example a semistan-
dard skew tableau with λ = (3, 2, 1) and µ = (2, 1) is:

3
• 2
• • 2

The reading word of a tableaux is the word we get by reading the entries of each row left to
right, starting with the top row and working down.

Definition: A word a1a2...an is a Littlewood-Richardson Word if every tail ak...an of the
word has at least as many copies of j as it has copies of j + 1 for every j.

Theorem: (The Littlewood-Richardson Rule for Symmetric Functions) For any partitions µ
and ν, let cλµ,ν be the number of semistandard skew tableaux of size λ/µ and content ν
whose reading words are Littlewood-Richardson words. Then

sµsν =
∑
λ

cλµ,νsλ

Example: We calculate the product s(2,1) · s(2,1). As (2, 1) is the content, we look for the
semistandard skew tableaux with two 1’s and one 2. As the reading words need to be
Littlewood-Richardson words, all words need to end in a 1 because if it ends in a 2 then that
tail won’t have any 1’s. The possible semistandard skew tableaux are below:

• 2
• • 1 1

2
•
• • 1 1

• 1 2
• • 1
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• 1
• • 1

1
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• • 1

2
1
•
• • 1

1 2
• 1
• •

2
1
• 1
• •

And so the product can be expressed as:

s(2,1) · s(2,1) = s(4,2) + s(4,1,1) + s(3,3) + 2s(3,2,1) + s(3,1,1,1) + s(2,2,2) + s(2,2,1,1)

Cauchy’s Formula

It is possible to put an inner product on the space of symmetric functions and the
Cauchy product formula is equivalent to the orthogonality of the Schur functions
under The Hall Inner Product.
Theorem: (Cauchy’s Formula) If X = {xi}∞i=1 and Y = {yi}∞i=1 are two sets of
variables, then we have∑

λ

sλ(X)sλ(Y ) =

∞∏
i=1

∞∏
j=1

1

1− xiyj

where the sum on the left hand side is over all partitions.
This result is not only amazing for it’s simplicity but also it’s combinatorial inter-
pretation. In proving this formula, one can consider the left hand side as a gen-
erating function for ordered pairs of semistandard tableaux (P,Q) of the same
shape, with weights xPyQ. The right hand side can be interpreted as a generat-
ing function (with respect to a construction not mentioned here) for 2× n arrays,

π =

[
a1 a2 ... an
b1 b2 ... bn

]
called Generalized Permutations for which a1 ≤ a2 ≤ ... ≤ an

and if a1 = ai+1 then bi ≤ bi+1.
A bijection < from generalized partitions of length n to pairs of semistandard
tableaux with n boxes and the same shape can be created via a correspon-
dence of Robinson, Schensted and Knuth. Let<(π) = (P (π), Q(π)), where P (π)
is the semistandard tableaux constructed via the RSK Insertion algorithm with
the entries in the bottom row of π. The RSK Insertion algorithm is a method of
constructing semistandard tableaux by inserting entries into an empty tableaux
one by one. If c is the entry being added to the tableau, RSK states: starting
with the bottom row, if c is greater than or equal to every value in that row then
add a box at the end of that row with c. If c is not the largest entry, then say b
is the leftmost entry greater than c, replace b with c and repeat the process with
b in the next row up. Continue until a new box has been added to the tableaux.
Q(π) is the semistandard tableaux with entries from the top row of π. These are
placed in the box that was added by inserting the corresponding bottom entry
when making P (π). The data of Q(π) allows one to reconstruct π given any pair
of semistandard tableaux. Hence it can be shown that < is a bijection.

Example: We calculate <(π) for π =

[
1 1 2 3 4
2 4 3 1 2

]
. The steps of making P (π):

2 → 2 4 →
4
2 3 →

4
2
1 3 →

4
2 3
1 2

And Q(π) is:
3
2 4
1 1
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