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Introduction Issues in Modelling Density
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This is why in figure 1 we see modes of unrealistic height for a density function. This network
therefore approximates an unnormalised p;(x). Hence, a more sensible approach may be mod-
elling the score function by the neural network, i.e setting s;,(x|0) = h(x|0) in Jo(0). This cir-
cumvents having to take two derivatives in our loss function, reducing computation significantly,
and achieves the same objective of minimising the distance between s;(x|0) and s;,(x|0). The
efficiency of this network compared to a baseline KDE for the score is expressed in table 1.

The main issue with this approach is that it is difficult to ensure the network h(x|6) satisfies all
properties of a density function. Namely, while the network accurately models the "shape” of the
data distribution, we face difficulty in enforcing the restriction

Consider the challenge of fitting an unnormalised model to observed data. Specifically, we have
data {x; € Rd}?zl ~ pg(x) to which we wish to fit a model density p,,(x|0) = q(x|0)/Z(0)
known only up to an intractable normalising constant Z(6). One technique to circumvent this
difficulty is called score matching [2]. This poster takes a closer look at this estimation method,
its contemporary descendant and explores possible applications.
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(a) Traditional approach [4]

Score Matching & Sliced Score Matching (b) Implicit approach

We define the score function of our data and our model to be s;(x) = Vxlogpy(x) and Figure 2. Visual comparison of the encoder section of VAE for each of the choices outlined.

sm(x]0) = Vxlogpm(x|0), respectively. It is straightforward to see that Vxlogpm(x) =

Vxlog q(x|0). Our estimator for # comes from minimising the expected squared distance be- Results & Conclusions

tween s4(x) and s;(x|6). This expectation can be reformulated through a trick with integration
by parts:

Dimension of x Sliced Score Matching Kernel Density Estimation In practice, the way we implement an implicit encoder is by having three neural networks learn

1 9 in parallel - one for each of the encoder, the decoder, and the score of the encoder. We
J1(0) = By, 2 |sm(x]0) — sa(x)]] 120 825 (2)%) train this model on MNIST and compare the loss of the autoencoder to that of the traditional
| . : approach.
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where C does not depend on 6. An estimator of this expectation can be computed through the o 0
law of large numbers: j1<9> — % ;?:1 {tr(vxsm(xi‘@)) s % Hsm(xz’@”ﬂ , assuming the data is a Table 1 Comparison pf the average egclidean distahce between estimated score and- theoretical score Qf a = 110 -

~ A Gaussian random variable using two different techniques. Each model was trained with 10,000 data points and 110
random sample. Then our estimator for 6 is § = arg minJ;(0). evaluated on 1,000 points unseen in training. The neural network was evaluated after 50 epochs of training, and 1 5 100 | mmw 5 100 -

0 projection vector was used to approximate the expectation in fg(e). 5 5 90 { q
One problem with this estimator is that when the dimension of the data x is high, computation g g .
of tr(Vxsm(x;|0)) is very costly. An idea presented in [5] proposes projecting random vectors =
v; sampled from p, (usually Gaussian or Rademacher) to approximate this trace. The objective Implicit VAEs with Score Matching i) Y
function then becomes X 0 5000 10000 15000 20000 25000 30000 35000 20000 ¥ 0 5000 10000 15000 20000 25000 30000 35000 40000
Variational Autoencoders are a form of neural network constructed to reduce the number of il e i LprEy =
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Jo(0) = Ep,Ep, |V Vs (x|0)v + 5 [lsm(x]0)

Using auto-differentiation methods and optimising the above using 8 gives us a computationally
effective estimator for 6.

dimensions of data x in such a way to encode as much information from the original data as
possible in the latent variable, z [3]. The network is built to model (and induce with each x)
an encoder distribution q4(z|x) and a decoder distribution pg(x|z). It is traditionally optimised

(a) Traditional approach (assuming gy) (b) Implicit approach

Figure 3. Loss functions over iterations for different VAE methods.

using the so-called ELBO objective:

L ¢(x) = By (zx)llog po(x, 2) — log gy (z[x)]
which forms a lower bound for the log-likelihood of x, log p(x). To perform gradient descent, we
need to compute V97¢EQ¢(Z|X> log pp(x,z) — log q4(z|x)]. Evaluating the gradient with respect

to 6 can be done quite easily, since g is independent of 6, leading to qub(LX)[V@ log pg(x|2)].

When evaluating the gradient with respect to ¢, we typically find some ¢ such that z = g¢(e, X),
where € ~ p(e). This is called the “reparameterisation trick’. Notice now that

We expect the greater flexibility of the implicit approach to accommodate a more “optimal” so-
lution. What we observe is a loss curve with a much higher variance than that of the traditional
VAE, which suggests a trade-off between bias and variance. Song, Garg, Shi, and Ermon|[5] used
the negative log-likelihood as a separate evaluation metric and found that the results between
the two methods were comparable. Given the computational cost of training the additional
score network as opposed to the computationally efficient operations of scaling and transla-
fion in the traditional approach, this casts some doubt that the trade-off is ultimately worth it.
Though score matching presents us an interesting technigue, we wonder if its most promising
applications lie elsewhere.

Score Matching for Energy Based Model Estimation

We begin our exploration by considering score-matching within the context of deep learning. We
consider having a neural network h(x|0) approximate our p4(x) through the objective detailed
above, i.e setting pn,(x]6) = h(x|0). Our architecture for the network is given by

= 3 hidden layers;
Ly (%) = E,e)llog pg(x, z) — log gy(z[x)], z = g4(€, x)

5 VgL ¢(x) = Epye)|Vg(log pg(x, 2) — log gg(z]x))],
Vg log gg(zx) = Vzlog q4(2[x)] 1=y, (e )V 990(€, X)

= 50 nodes in each hidden layer;
= Swish activation function
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