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Introduction

Consider the challenge of fiষng an unnormalised model to observed data. Specifically, we have

data {xi ∈ Rd}n
i=1 ∼ pd(x) to which we wish to fit a model density pm(x|θ) = q(x|θ)/Z(θ)

known only up to an intractable normalising constant Z(θ). One technique to circumvent this

difficulty is called score matching [2]. This poster takes a closer look at this esধmaধon method,

its contemporary descendant and explores possible applicaধons.

Score Matching & Sliced Score Matching

We define the score funcধon of our data and our model to be sd(x) = ∇x log pd(x) and
sm(x|θ) = ∇x log pm(x|θ), respecধvely. It is straighĤorward to see that ∇x log pm(x) =
∇x log q(x|θ). Our esধmator for θ comes from minimising the expected squared distance be-

tween sd(x) and sm(x|θ). This expectaধon can be reformulated through a trick with integraধon
by parts:

J1(θ) := Epd

[
1
2

‖sm(x|θ) − sd(x)‖2
]

= Epd

[
tr(∇xsm(x|θ)) + 1

2
‖sm(x|θ)‖2

]
+ C,

where C does not depend on θ. An esধmator of this expectaধon can be computed through the

law of large numbers: Ĵ1(θ) = 1
n

∑n
i=1

[
tr(∇xsm(xi|θ)) + 1

2 ‖sm(xi|θ)‖2
]
, assuming the data is a

random sample. Then our esধmator for θ is θ̂ = arg min
θ

Ĵ1(θ).

One problem with this esধmator is that when the dimension of the data x is high, computaধon

of tr(∇xsm(xi|θ)) is very costly. An idea presented in [5] proposes projecধng random vectors

vi sampled from pv (usually Gaussian or Rademacher) to approximate this trace. The objecধve

funcধon then becomes

J2(θ) = EpvEpd

[
vT ∇xsm(x|θ)v + 1

2
‖sm(x|θ)‖2

]
Using auto-differenধaধonmethods and opধmising the above using θ gives us a computaধonally
effecধve esধmator for θ.

Score Matching for Energy Based Model Estimation

We begin our exploraধon by considering score-matching within the context of deep learning. We

consider having a neural network h(x|θ) approximate our pd(x) through the objecধve detailed

above, i.e seষng pm(x|θ) = h(x|θ). Our architecture for the network is given by

3 hidden layers;

50 nodes in each hidden layer;

Swish acধvaধon funcধon
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Figure 1. Two distribuধons modelled by score matching.

Issues in Modelling Density

The main issue with this approach is that it is difficult to ensure the network h(x|θ) saধsfies all
properধes of a density funcধon. Namely, while the network accurately models the ”shape” of the

data distribuধon, we face difficulty in enforcing the restricধon∫
x∈Rd

h(x|θ) dx = 1

This is why in figure 1 we see modes of unrealisধc height for a density funcধon. This network

therefore approximates an unnormalised pd(x). Hence, a more sensible approach may be mod-
elling the score funcধon by the neural network, i.e seষng sm(x|θ) = h(x|θ) in Ĵ2(θ). This cir-
cumvents having to take two derivaধves in our loss funcধon, reducing computaধon significantly,

and achieves the same objecধve of minimising the distance between sd(x|θ) and sm(x|θ). The
efficiency of this network compared to a baseline KDE for the score is expressed in table 1.

Dimension of x Sliced Score Matching Kernel Density Esধmaধon

2 0.12 0.26

10 0.69 2.72

20 1.23 3.89

40 2.02 5.42

Table 1. Comparison of the average euclidean distance between esধmated score and theoreধcal score of a

Gaussian random variable using two different techniques. Each model was trained with 10,000 data points and

evaluated on 1,000 points unseen in training. The neural network was evaluated ađer 50 epochs of training, and 1

projecধon vector was used to approximate the expectaধon in Ĵ2(θ).

Implicit VAEs with Score Matching

Variaধonal Autoencoders are a form of neural network constructed to reduce the number of

dimensions of data x in such a way to encode as much informaধon from the original data as

possible in the latent variable, z [3]. The network is built to model (and induce with each x)
an encoder distribuধon qφ(z|x) and a decoder distribuধon pθ(x|z). It is tradiধonally opধmised
using the so-called ELBO objecধve:

Lθ,φ(x) = Eqφ(z|x)[log pθ(x, z) − log qφ(z|x)]

which forms a lower bound for the log-likelihood of x, log p(x). To perform gradient descent, we

need to compute ∇θ,φEqφ(z|x)[log pθ(x, z) − log qφ(z|x)]. Evaluaধng the gradient with respect
to θ can be done quite easily, since qφ is independent of θ, leading to Eqφ(z,x)[∇θ log pθ(x|z)].
When evaluaধng the gradient with respect to φ, we typically find some g such that z = gφ(ε, x),
where ε ∼ p(ε). This is called the “reparameterisaধon trick”. Noধce now that

Lθ,φ(x) = Ep(ε)[log pθ(x, z) − log qφ(z|x)], z = gφ(ε, x)
∴ ∇φLθ,φ(x) = Ep(ε)[∇φ(log pθ(x, z) − log qφ(z|x))],

∇φ log qφ(z|x) = ∇z log qφ(z|x)|z=gφ(ε,x)∇φgφ(ε, x)

Hence, the score funcধon of the distribuধon qφ(z|x) is needed for evaluaধon of this gradient.
Within this framework, there exists a bifurcaধon between:

1. Choosing qφ(z|x) so that ∇z log qφ(z|x) is tractable. This usually involves restricধng
z|x ∼ N (µ, Σ), so that z|x = µ + Σ · ε, where ε ∼ N (0, Id). If we use the neural network
modelling the encoder to produce µ and Σ, our reparameterisaধon is then precisely
gµ,Σ(ε, x) = µ(x) + Σ(x) · ε.

2. Approximaধng the score funcধon. We consider using sliced score matching to accomplish

this objecধve. We let our encoder network be gφ(ε, x) itself, appending ε to each x. Ađer
each pass, we esধmate ∇z log qφ(z|x) through a score network. In this way, we construct an
“implicit” encoder, in the sense that we need make no assumpধons about the distribuধon of

z|x, besides specifying the funcধonal form z = gφ(ε, x).

(a) Tradiধonal approach [4]
(b) Implicit approach

Figure 2. Visual comparison of the encoder secধon of VAE for each of the choices outlined.

Results & Conclusions

In pracধce, the way we implement an implicit encoder is by having three neural networks learn

in parallel – one for each of the encoder, the decoder, and the score of the encoder. We

train this model on MNIST and compare the loss of the autoencoder to that of the tradiধonal

approach.

(a) Tradiধonal approach (assuming qφ) (b) Implicit approach

Figure 3. Loss funcধons over iteraধons for different VAE methods.

We expect the greater flexibility of the implicit approach to accommodate a more “opধmal” so-

luধon. What we observe is a loss curve with a much higher variance than that of the tradiধonal

VAE, which suggests a trade-off between bias and variance. Song, Garg, Shi, and Ermon[5] used

the negaধve log-likelihood as a separate evaluaধon metric and found that the results between

the two methods were comparable. Given the computaধonal cost of training the addiধonal

score network as opposed to the computaধonally efficient operaধons of scaling and transla-

ধon in the tradiধonal approach, this casts some doubt that the trade-off is ulধmately worth it.

Though score matching presents us an interesধng technique, we wonder if its most promising

applicaধons lie elsewhere.
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