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COSMOLOGICAL INTEREST
There are two main quantities of interest in

the large-scale, cosmological viewpoint:

• A set, M, that defines the topology of the
universe on the whole. We expect this, for
intuitive reasons, to be (at least) locally iso-
morphic to R3+1.

• A metric, g, a 2-form that gives meaning to
distance on M. That is, the line element ds is
given by ds2 = gabdx

adxb, for {dxi} ∈ TpM
and p ∈ M.

The pair (M, g) defines a spacetime mani-
fold, which provides a description of a universe
obeying 1.

The extreme difficulty in solving 1 leads to
an examination of metrics on particular topolo-
gies with suitable symmetries or physically intu-
itive properties. These do not, however, necessi-
tate a faithful representation of our own universe,
which we shall explore.

INTRODUCTION
The defining tenet of General relativity as-

serts that the acceleration of objects is indistin-
guishable from their gravitation towards a distri-
bution of mass. Such a viewpoint leads to the
concept that an object’s motion is representable
by inertial paths, like those alluded to in New-
ton’s First Law; called geodesic null lines, along
a space defined by the presence of matter inside
it.

Such a view is encapsulated in the Einstein
Field Equations, an expression of local energy
conservation:

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ (1)

This equates a description of distances and
curvature (see LHS) to matter distribution (RHS).

ASPECTS OF ROBERTSON-WALKER SPACETIMES

Robertson-Walker spacetimes are charac-
terised by their invariance under SO(3) action and
two physical conditions:

• Homogeneity - a metric at any point on a
spacelike hypersurface, i.e. the spatial as-
pect of the manifold at any given time, is iso-
metric to that at any other point. Essentially,
space appears the same at any point.

• Isotropy - there exists such an isometry that
rotates a spatial vector into any other; mak-
ing space the same from any angle. This con-
dition is very strict.

It should be noted that our universe fulfils,
to large-scale approximation, these conditions.[1]
However, at periods in the universe’s history this
may not remain true - a true-to-reality model may
not be a Robertson-Walker space.

Under the symmetry condition, M ∼= R × S3,
and the other two lead to three unique cases up
to isomorphism, where the spatial curvature k is
constant; and k > 0, k = 0, k < 0 respectively:

ds2 = −dt2+a(t)


dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)

dx2 + dy2 + dz2

dψ2 + sinh2 ψ(dθ2 + sin2 θdφ2)

Geometrically, these respectively represent
space as 3-spheres, R3, and three-dimensional hy-
perboloids. The former is particularly interesting
as its manifold is compact; the universe can be
said to be finite.

The quantity a(t) is particularly important; it
represents the ’size’ of the universe. By making a
(general) assumption on the form of T as a func-
tion of energy density ρ, from 1 we derive the
Friedmann equations:
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ȧ
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a
= −4π(ρ+ 3P (ρ)) + Λ (3)

Figure 1: Qualitative behaviour of Friedmann equa-
tions for P = 0 and P = ρ/3. Via [1]
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DE SITTER SPACETIME

de Sitter spactime is an especially interesting ex-
ample of a Robertson-Walker spacetime; it is a non-
trivial solution to 1 for which Tαβ = 0; i.e. the universe
is without mass or energy. Yet, the solution indicates a
universe with positive curvature, with metric:

ds2 = −dt2 +α2 cosh(
t

α
)(dψ2 +sin2 ψ(dθ2 +sin2 θdφ2))

Indicating a(t)→∞ as |t| → ∞; the ’size’ of space
increases to ∞, despite the complete lack of energy; a
disturbing result of General Relativity for many.

FUTURE RESEARCH
Non-homogeneous solutions, while much more

difficult to formulate, are more exotic than solutions
shown here; offering bounds of mathematical interest.

Questions of stability of universal models and
other cosmological phenomena under perturbations
are being deeply researched, requiring considerations
of the norm used to consider perturbations. See [3].

EINSTEIN’S STATIC UNIVERSE

An important example, and the first enumer-
ated example of a cosmological model, is the ’Ein-
stein Static Universe’.

Figure 2: The Einstein Static universe with two dimensions
suppressed; via [2]. Note the radius is constant; this is equiv.
to constant a(t). The shaded region is conformal to Minkowski
space.

This looks for a static solution to 2 and 3; i.e. s.t.
a(0) := a0 and ȧ(0) = ä(0) = 0. This condition requires
Λ > 0, k = +1; this universe ends up having a spa-
tial component isomorphic to the 3-sphere, and hence is
compact; i.e. space is finite in some sense.

Analysis of 2 and 3 leads to the parametric solu-
tion:

a(λ) =
α1 exp{α2

√
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Where {αi} are constants, in terms of the roots of a poly-
nomial encountered during analysis, and have been
omitted for brevity. See [4] for details.

By adjusting the initial conditions for the above
about the static value a0, one finds that any small per-
turbation results in a trajectory that does not lead back
to a0; a static solution is unstable. Because we do not
expect isotropy and homogeneity to hold locally, this
indicates that this universe is not physically significant.


