
CONVERGENCE RATE FOR REGULARISED LINEAR LEAST SQUARES USING DISTRIBUTED FORWARD-BACKWARD METHOD

Beilun Zhang, supervised by Matthew Tam
University of Melbourne

CONVERGENCE RATE FOR REGULARISED LINEAR LEAST SQUARES USING DISTRIBUTED FORWARD-BACKWARD METHOD

Beilun Zhang, supervised by Matthew Tam
University of Melbourne

Introduction

Consider the problem where we want to find the most sparse vector x that satisfies
Ax = b (i.e. minimise ||x||0, the number of zero entries in x). This problem can
be approximated as an optimisation problem as follow:
Let λ > 0, A ∈ Rm×n, b ∈ Rm, find

argmin
x∈Rn

λ∥x∥1 +
1

2
∥Ax− b∥22 (1)

This problem is called the ℓ1-regularised linear least squares. There are already
well-established algorithms to solve this problem (such as the forward-backward
method), which works well in a centeralised setting, however, here we will con-
sider an algorithm for this problem that is optimised for a distributed setting.

Model

In [1], Arago-Artacho, Malitsky, Tam and Torregrosa-Belen proposed an algo-
rithms to solve monotone inclusion problems in a real Hilbert space H in the
form of:

find x ∈ H such that 0 ∈
(n∑

i=1

Ai +

m∑
i=1

Bi

)
(x) (2)

where A1, ...,An : H ⇒ H are maximally monotone operator and B1, ...,Bm :
H → H are 1

L-cocoercive. By using zero operators if necessary, the algorithm
can always assume that m = n − 1. The algorithm can be expressed as fixed
point iteration zk+1 = T(zk), T : H n−1 → H n−1 is given by

T(z) := z + γ

x2 − x1
x3 − x2

...
xn − xn−1

 (3)

where x = (x1, ..., xn) ∈ H n depends on z = (z1, ..., zn−1) ∈ H n−1 and is given
by

x1 = JαA1
(z1)

xi = JαAi
(zi + xi−1 − zi−1 − αBi−1 (xi−1)) ∀i ∈ [2, n− 1]

xn = JαAn
(x1 + xn−1 − zn−1 − αBn−1 (xn−1))

Where Jf is the resolvent for operator f . After finding z∗ ∈ Fix T through fixed
point iteration, x as described in (2) is given by x∗ = JαA1

(z∗1).
In a distributed system with n agents, agent i is responsible for updating xi and
sending xi to agent i− 1, i + 1 mod n
We can apply this to our problems of ℓ1-regularised linear least squares. The
equation in (1) is equivalent to

n∑
i=1

λ|xi| +
m∑
i=1

1

2
|Aix− bi|2 =

n∑
i=1

gi(x) +
m∑
i=1

fi(x) (4)

Since the problem is convex, finding argminx∈Rn for (4) is the same as finding
x ∈ Rn such that 0 ∈ (

∑n
i=1 ∂gi +

∑m
i=1∇fi)(x), where ∂gi is the subdifferential

of gi, thus we have Ai = ∂gi and Bi = ∇fi, with

Jα∂gi =

x1
...

S(xi;αλ)
...
xn

 and ∇fi(x) = AT
i (Aix− bi)

Where Ai is the ith row of matrix A and

S(y; k) =

y + k y < −k

0 −k ≤ y ≤ k

y − k y > k

Results

We explored 3 methods/conditions that affects the convergence rate

Values for α and γ

There are 3 free parameters in the model: λ (regularization parameter), α (step size) and γ
(relaxation parameter). We will focus only on the parameter α and γ, as λ controls how good
the approximation is and has little effect on the convergence rate. From [1], the algorithm
would converge when α ∈ (0, 2L) and γ ∈ (0, 1− αL

2). Fig. 1 shows the normalized number
of iterations the algorithm takes when we set α and γ a certain percentage of their upper
bound. The figure shows that the number of normalized iterations is minimum when α is
approximately 50% of 2

L and γ is close to 100% of 1− αL
2 .

Fig. 1: Axis represent the % of theoretical

upper bound α, γ is at

Fig. 2: Experimental upper bound for γ vs

theoretical upper bound

However, it turns out that the upper bound for γ and α could be improved. Fig. 2 shows
the γ values that gives the lowest number of iterations for each α, depicts that the algorithm
still converges when the parameters are not within their theoretical upper bound. If we go
beyond the theoretical upper bound, the optimal α value is still somewhere around 50% of
the 2

L (L = 1 in this example), as shown in Fig. 4, with the optimal γ value being around 0.7

Preconditioning

Another way to improve the convergence rate is the scale the Lipschitz constant L so that
each ∇fi is at most L-Lipschitz (i.e. they are not (L − ϵ)-Lipschitz). Note due to Baillon-
Haddad theorem, ∇fi is 1

L-cocoercive iff it is L-Lipschitz. ∇fi is L-Lipschitz if:

∥∇fi(x)−∇fi(y)∥ = ∥AT
i Ai(x− y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rn (5)

As ∥AT
i Ai(x − y)∥ ≤ σmax(A

T
i Ai)∥x − y∥, where σmax(A

T
i Ai) is the maximum singular

value of AT
i Ai, ∇fi is thus at most σmax(A

T
i Ai)-Lipschitz. We can multiply each row Ai with√

L
σmax(AT

i Ai)
to have each ∇fi at most L-Lipschitz. This is equivalent to multiplying A with

a diagonal matrix D, and our new problem has Anew = DA, and bnew = Db, note that this
won’t change the solution of our algorithm.

Fig. 3: Convergence rate for preconditioning with different L

"unbalanced" is when we have no preconditining

Fig. 4: iterations for the algorithm when the optimal γ value is

used for that α

Preconditioning this way drastically improves the convergence rate. In general, the lower L
is, the faster the algorithm converges, which is to be expected as the upper bound for α is

larger so we can take a larger step for each iteration. However, having a small L
comes at a cost - the λ parameter tends to be more sensitive when we have a
small L so it would require more work to calibrate it in order for the approximation
to be decent.

Different splitting methods

In equation (4), we set gi(x) = λ|xi|, which uses one coordinate of x, and fi(x) =
1
2|Aix − bi|2, which uses one row of A. However, we could also split λ∥x∥1 and
1
2∥Ax − b∥22 into gi(x), fi(x) differently, so that gi(x) uses k coordinates from x
and fi(x) uses k rows from A (e.g. when k = 2, g1(x) = λ(|x1| + |x2|), f1(x) =
1
2(|A1x− b1|2 + |A2x− b2|2))

Fig. 5: Convergence rate of different splitting methods

Fig. 6: Ratio of iteration between full split and other split

methods

Some notable observations are that:

• When g1(x) = λ∥x∥1, g2(x) = 0, f1(x) =
1
2∥Ax− b∥22 (which we call the "full

split"), the algorithm is the same as the Davis-Yin splitting

• The less number of gi, fi we split, the better the convergence rate

• Compared to full split (which can be seen as the a centralized algorithm),
splitting with k = 1 (which can be seen as distributed algorithm) needs to be
approximately 2 times faster to outperform it, which is rather manageable in
a distributed setting as each agents do calculations in parallel

Remark

• We make the algorithm terminate when ∥zk+1 − zk∥ ≤ 1e − 3 or when
k = 10, 000, whichever comes first

• Trials were done by generating a random sparse x vector with dimension n,
and then randomly generates a n×n matrix A. b is generated using b = Ax

Future Work

• Find the formula for the actual upper bound of γ and α

• Implement the distributed version of the algorithm

References

[1] Francisco J. Aragón-Artacho et al. Distributed forward-backward methods for Ring Net-
works. July 2022. URL: https://doi.org/10.48550/arXiv.2112.00274.

[2] Yu. Malitsky. Projected reflected gradient methods for monotone variational inequalities.
Feb. 2015. URL: https://arxiv.org/abs/1502.04968.

[3] Ernest K. Ryu and Wotao Yin. Large-scale convex optimization: Algorithms amp; analyses
via monotone operators. Cambridge University Press, 2023.

