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Introduction

There are many large-scale networks everywhere around the world, playing signif-

icant parts in human society, such as NBN, water and gas pipelines, transportation

networks and so forth. However, real networks are potentially vulnerable to disas-

ters or terrorists. Such interruptions can sometimes cause serious consequences.

This project is to contribute to such an algorithm that helps design robustly con-

nected networks against any possible events that may cause partial disconnections.

Intuitively, when a disaster is modeled by some geometric region, the algorithm

aims to identify all possible interruptions and enhance the network without blow-

ing the budget.

Preliminaries[1]

Due to space constraints and for simplicity, in this project, we only consider recti-

linear cases. And to help understand, here are some preliminaries explained.

A cut C is defined as a subset of edges in a connected graph G whose removal

disconnects G.

An inducing region to C is a connected region in the plane which intersects all

the edges in C . And it is considered as minimum inducing region R(C) (see Fig.
1) when it can not be further diminished by any arbitrarily small value, ensuring

continued intersection with every edge in C .

C is called 1-D cut if R(C) is a segment. If R(C) is an rectangle, then C is

called a 2-D cut.

All 1-D cut can be found in O(n × MaxC × MaxQU) time and all 2-D cut can

be found in O(n2 × MaxC × MaxQU) time, where n is the number of edges,

MaxC is the maximum size of cut, MaxQU is the maximum query time.[1]

Figure 1. R(C), where cut C = {1, 2, 3, 4} Figure 2. Protection cases

Assumption

To be a milestone towards the algorithm, this project aims to identify all possible

cuts when given the shape of fault regions without specified positions. To focus

on scenarios where the region intersects edges, we do not consider cases where

the region covers a vertex and naturally cuts all edges connected with it. We avoid

this by putting protection cases (squares with side length equal to the length of

the fault region) on every vertex (see Fig. 2)

Optimised Algorithm for 1-D Cuts

The algorithms[1] initially concentrated on the scenarios where there is no pro-

tection case. To alignwith the objectives of this project, they have beenmodified

and enhanced. By integrating the plane sweep algorithms[2], we refine the ap-

proach by considering more suitable event points and corresponding methods

for each event.

Identify all 1-D cuts

To identify all 1-D cuts, the algorithm runs both vertical and horizontal sweeps

in the plane. The vertical sweep is illustrated here and the horizontal follows

similarly.

In this line sweeping algorithm, a vertical sweeper L sweeps the plane progress-

ing from left to right. It stops each time newly encountering unprotected parts

of an edge (see Fig. 3). At each of this points, we need only to identify all 1-D

cuts containing the newly encountered edge, which means that the algorithms

need only to consider the nearby parts of the edge. As shown in Fig. 3, the

algorithm only considers a part with length of 2l near edge 1, where l is the fault

region’s length, hence it checks whether {1} forms a cut. And the second time

L stops (see Fig. 4), it checks {1} and {1, 2}

Figure 3. Figure 4. Figure 5.

In the scenarios where L encounters vertical edges (e.g. Fig. 5), it is clear that

the only possible cut containing the encountered edge is the edge itself, whose

identification, however, will also be completed in horizontal sweep, which causes

redundancy. Hence, in the case of vertical sweep, the algorithm does not stop

at vertical edges.

Time Complexity

This integrated algorithm can identify all 1-D cuts in O(n × l × MaxQU) time.

In our scenario, it is more efficient, compared with the initial algorithm, since we

need only to take the cuts, whoseminimum inducing region can be encompassed

by the fault region, into consideration.

Optimised Algorithm for 2-D Cuts

Similar to 1-D algorithm, the initial 2-D algorithm has been integrated into our

specific scenario.

Identify all 2-D cuts

To identify all 2-D cuts, the algorithm also executes both vertical and horizontal

sweeps but with double sweep lines. Now the primary sweeper L stops at not

only the point when it encounters a new edge but also when it is about to leave

an edge (see Fig. 6 and 7).

Figure 6. Figure 7.

At each time L stops, the secondary sweeper L′ progresses from L’s current

location to the right until the distance between them reaches l, stopping at each

time it encounters a new edge (see Fig. 8) and the moment the distance reaches

l. Then, at each time L′ stops, the algorithm checks the area bounded by L from

left and L′ from right, spanning a length of 2l (see Fig. 7).

Figure 8. Figure 9.

For instance, as illustrated in Fig. 8, the red region can be encompassed by the

fault region, forming a cut {1, 2, 3}. Similarly, in Fig. 9, the resulting cut is {4, 5}.

Time Complexity

Similar to 1-D cuts, the 2-D cuts identification algorithm is optimised based on

our scenario and performs higher efficiency, O(n × l2 × MaxQU).

Conclusion

Integrating the initial algorithms[1], optimised algorithms identify all cuts in

O(nl2 log n(log log n)3) time, given that MaxQU = log n(log log n)3 [3]. This poten-

tially helps research towards algorithms of designing robustly connected networks.
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