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Introduction

Conformal field theories (CFTs) are a particular type of quantum

field theory (QFT) that study the behavior of physical systems un-

der conformal, or angle-preserving, transformations. In practice,
2D CFTs have been remarkably successful in describing critical phe-

nomena, which for example occur in second order phase transitions,

when a system’s properties change dramatically as it approaches a

critical point. CFT also has wide ranging applications in other areas

of mathematics such as in string theory, a possible candidate for the

theory of quantum gravity.

This goal of this poster is towrite down the Hilbert space of a specific

type of CFT, namely the SU(2)WZWmodel.

Conformal invariance in 2D
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Figure 1. An example of a conformal transformation on the complex plane.

In 2D Euclidean space, conformal invariance gives rise to an infi-

nite dimensional symmetry algebrawhich generates the local con-
formal transformations on the plane. In a quantum theory, this is

two commuting copies of theVirasoro algebra, each generated by
{Ln, c} and {Ln, c} (n ∈ Z), with nontrivial commutation relations

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0

[Lm, Ln] = (m− n)Lm+n + c

12(m3 −m)δm+n,0

Per the discussion of the next section, we call these copies holomor-

phic and antiholomorphic.

CFTs may exhibit extra symmetries, so their symmetry algebra could

be a larger algebra containing the two Virasoro algebras. They still

decompose into holomorphic and antiholomorphic copies as above.

Conformal fields

Conformal fields φ(xµ) are mathematically modelled as functions
of space-time, which in two dimensions reads φ(xµ) = φ(x, t). Clas-
sically, they are real valued and live on a cylinder. To transform to the

complex plane we put t = iτ and make a specific change of variables:
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Figure 2. The transformation from the cylinder to the plane

This gives φ(x, t) = φ(z, z). In the quantised theory, these fields
admit Laurent expansions

φ(z, z) =
∑

n,m∈Z
φn,mz

−n−hφ z−m−hφ

The coefficients φn,m are referred to as the modes of φ(z, z) and(
hφ, hφ

)
∈ R2 are called its conformal dimensions.

It turns out that the fields φ(z, z) which generate the symmetry al-
gebra in a CFT decompose into holomorphic and antiholomorphic

components φ(z) and φ(z), with modes φn and φm that satisfy the

algebra. This produces its two commuting sectors. Conformal fields

in general often follow this same factorisation.

In much of the following discussion we only consider the holomor-

phic sector and fields φ(z), however all results hold analogously for
their antiholomorphic counterparts.

Operator product expansions & radial ordering

In a CFT, the information about how any two fields interact is en-

coded in an operator product expansion (OPE):

R {A(z)B(w)} =
∑
n∈Z

Cn(w)
(z − w)n

The Cn(w) are themselves fields, and the notation R {· , ·} refers to
the radially−ordered product of two fields:

R {A(z)B(w)} =
{
A(z)B(w) if |z| < |w|
B(w)A(z) if |w| < |z|

Importantly, an OPE of two fields is equivalent to the commutation

relations of their modes (and hence the symmetry algebra):

[an, bm] =
‰

0

‰
w

R {A(z)B(w)} zn+hA−1wm+hB−1 dz
2πi

dw
2πi

The universal vacuummodule

To extract useful information from a CFT,we need to knowhowfields

act on vector spaces. To do this, the generators an of the holomor-

phic sector of a symmetry algebra are split into three types:

(i) an with n > 0 are called annihilation operators

(ii) an with n = 0 are called zero modes

(iii) an with n < 0 are called creation operators.

Using these, we define a vector |0〉 called the vacuum such that an|0〉
for all n ≥ 0. The universal vacuum module V0 is then generated

from |0〉 by acting on it with strings of creation operators:

V0 = SpanC
{

· · · an3
−3a

n2
−2a

n1
−1|0〉 | ni ≥ 0 and

∑∞
i=1 ni < ∞

}
V0 is an example of a module of this sector of the symmetry algebra.

A field φ(z) then acts on a vector |v〉 ∈ V0 by φ(z)|v〉, which can be
computed explicitly via its Laurent expansion.

The state-field correspondence & quantum state space

The fields of a CFT can be used to define the quantum state space,
or Hilbert space, H of the theory. Each state |φ〉 ∈ H is defined by

the action of a field φ(z, z) on |0〉 ⊗ |0〉:

|φ〉 = lim
z,z→0

φ(z, z)|0〉 ⊗ |0〉

This is the state−field correspondence. The tensor product ac-
counts for the antiholomorphic sector of the theory, which behaves

identically to and independently of the holomorphic sector. H will

therefore decompose (for the theory considered in this poster) into

a direct sum of tensor products of irreducible modules R of the two

sectors of the symmetry algebra, giving H to be of the form

H =
⊕

R
R ⊗ R

In general this could be much more complicated.

H describes all the possible states of the CFT, and contains almost

all the information we care to know about the theory. It may be

used to obtain the partition function of the system, thereby all its

relevant physical thermodynamic quantities. Moreover, knowing the

representation theory of the symmetry algebra is a crucial step in

solving the theory (computing all the correlation functions).

The SU(2) WZWmodel

In this poster, we use the Lagrangian formalism to define our field

theory. To that end, consider a QFT on the compactified cylinder C,
homeomorphic to the Riemann sphere S2. The fields of the theory

are thought of as maps g(z, z) from S2 to SU(2), which, topologically,
is equivalent to the 3-sphere S3:
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Figure 3. A visualisation of the map g : S2 → SU(2) ∼= S3. The 3-sphere S3 is
homeomorphic to two 3-balls B3 with their boundaries identified, as above.

The model itself is defined by the action

S[g] = − k

16π

ˆ
∂M

Tr
(
g−1∂µg · g−1∂µg

)
d2x

− ik

24π

ˆ
M
εabc Tr

(
g−1∂ag · g−1∂bg · g−1∂cg

)
d3y

where k is some positive integer and ∂M = S2. The conserved

currents can be found using standard Lagrangian methods:

J(z) = −k∂zg · g−1, J(z) = kg−1∂zg

They take values in the complexified Lie algebra sl2(C) of SU(2), so
expanding the holomorphic current in the canonical basis {E,H, F}
of sl2(C), the fields become E(z), H(z) and F (z). Their modes
{En, Hn, Fn : n ∈ Z} then comprise the basis of the symmetry alge-
bra associated with this WZWmodel. Their OPEs can be calculated,

H(z)E(w) ∼ 2E(w)
z − w

, H(z)F (w) ∼ −2F (w)
z − w

,

H(z)H(w) ∼ 2k
(z − w)2 , E(z)F (w) ∼ k

(z − w)2 + H(w)
(z − w)

fromwhich the nontrivial commutation relations of (the holomorphic

sector of) the symmetry algebra can be computed:

[Hm, En] = 2Em+n [Fm, Hn] = 2Fm+n

[Hm, Hn] = 2mkδm+n,0 [Em, Fn] = Hm+n +mkδm+n,0

This is the affine Kac-Moody algebra, denoted ŝl(2)k. k is called the
level of the theory. The antiholomorphic sector behaves identically,

so the symmetry algebra of this CFT is two commuting copies of

ŝl(2)k. TheHilbert spaceH is then comprised of direct sums of tensor
products of two irreducible modules of ŝl(2)k. It can be checked

that these generators also give rise to the required Virasoro algebras,

hence the theory is indeed conformally invariant.

Highest weight modules

In the context of SU(2) (or from now on ŝl(2)k) WZW models, the

vacuum vector |0〉 is defined to satisfy Hn|0〉 = En|0〉 = Fn|0〉 = 0
for all n ≥ 0 and V0 is built from the creation operators F−n, H−n,

and E−n with n > 0. This module is an example of a highest weight
module Vλ, which are in general constructed by acting with creation

operators on a highest weight vector |λ〉, which must satisfy

H0|λ〉 = λ|λ〉 and Hn|λ〉 = En−1|λ〉 = Fn|λ〉 = 0 ∀n ≥ 1

These are the modules that appear in the expression forH. The H0-

eigenvalue is called the ‘weight’ of a vector. A priori, the weights λ of
these highest weight vectors could take values anywhere in R. The
aim now is to determine which of these are actually valid in the ŝl(2)k

WZW model theory. To do this, we introduce the concepts of null

and singular vectors.

Singular & null vectors

Physically, observables in quantum mechanics can be expressed in

terms of scalar products. If a vector is orthogonal to every other state

with respect to this product, then any observable quantity involving

it will be zero. We call such a vector a null vector.

A singular vector |χ〉 in a highest weight module Vλ is a descendent

of |λ〉 that is itself a highest weight vector. Singular vectors and all of
their descendants are null vectors, so guided by the motivation from

quantum mechanics, they generate submodules 〈|χ〉〉 of Vλ that we

can then quotient by to obtain the irreduciblemodulesLλwhich form

the Hilbert space of the theory. This amounts to declaring that all the

modes of the fields corresponding to the null vectors will act as the

zero operator on all other vectors in the theory.
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Figure 4. Quotienting Vλ (left) by the submodule 〈|χ〉〉 to form Lλ (right)

Constraint on allowable highest weight vectors

We can now constrain the values of λ for an ŝl(2)k WZWmodel.

We begin by noting |ψ〉 = Ek+1
−1 |0〉 is a singular vector in the uni-

versal vacuum module. Since all the vectors inside the submodule

〈|ψ〉〉 are null, all the modes of the corresponding fields will act as
the zero operator on all states. One such null vector is

|χ〉 = F 2k+2
0 |ψ〉 = (−1)k+1(2k + 2)!F k+1

−1 |0〉

Using the state-field correspondence we find the zero mode of

the field χ(z) (after normalisation) and act with it on an arbitrary
highest weight vector |λ〉:

χ0|λ〉 =
∑

n1,...,nk∈Z
F−

∑k
j=1 nj

k∏
j=1

Fnj |λ〉

Wenotice that the above expression vanishes by default whenever

nj is nonzero and recall that χ0 must be the zero operator, which

leaves us with F k+1
0 |λ〉 = 0. Finally, we act on this expression with

Ek+1
0 which ultimately gives us

Ek+1
0 F k+1

0 |λ〉 = (k + 1)!
k∏

j=0
(λ− j)|λ〉 = 0

implying that for the existence of the singular vector |ψ〉 to be con-
sistent with the theory, we require λ ∈ {0, 1, . . . , k}. Therefore,
there are only k + 1 allowable highest weight states in an ŝl(2)k

WZWmodel, each characterised by a weight λ ∈ {0, 1, . . . , k}.

The Hilbert space

In each module Vλ there is a singular vector E
k+1−λ
−1 |λ〉. These sin-

gular vectors turn out to generate all the possible null states in each

highest weight module, so the submodules that they generate are

maximal in Vλ. It follows that the irreducible modules appearing in

the expression of H are given by the quotient

Lλ = Vλ〈
Ek+1−λ

−1 |λ〉
〉

This finally yields the full Hilbert space of the ŝl(2)k WZWmodel:

H =
k⊕

λ=0
Lλ ⊗ Lλ
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