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Introduction

The six-vertex model was first introduced in the early 20th century
in statistical mechanics as a means to describe crystal lattices with
hydrogen bonds. Now, it features prominently in key areas of math-
ematical research, such as:

⦁ integrable models
⦁ quantum stochastic processes
⦁ enumerative combinatorics

In this project, we focus on the construction of the partition func-
tions of six-vertex models under certain parameterisations.

Construction of the Lattice

We consider the six-vertex model in two dimensions, where it is a
directed square lattice. At any given edge, a 1 indicates a path,
and a 0 indicates the absence of a path. Allowed vertices are path-
preserving, meaning 0s and 1s entering on the left and bottom must
equal those exiting through the right and top. This results in six
valid configurations, shown with their weights below:
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Figure 1. Spectral weights

z = y∕x

The spectral parameter z is calculated in Figure 1, as the ratio of
the incoming and outgoing variables.

We also consider a lattice that features ‘corner’ weights. These have
Boltzmann weights and pictorial representation:
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Where p, q and r are free parameters, x is the incoming parameter,
and

ℎ(x) =
pr(1−x2)
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The weight of a particular lattice is given by the product of all
vertex Boltzmann weights on the lattice. The partition function is
calculated as the sum of weights over all possible configurations of
a given lattice.

We consider two lattices under set boundary conditions and their
associated partition functions: the domain wall partition function
Zm ;
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and the triangular partition function Tm ;
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Under our choice of Boltzmann weights, it can be shown that Zm will
be a rational function in each xi with degree m−1 numerator and
denominator, and Tm a rational function with degree m+1 numerator
and denominator.

The R-Matrix and K-Matrix

We can store our vertex and corner weights in algebraic objects
called the R-matrix and K-matrix, which have representation:
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a(z) 0 0 0
0 b(z) c(z) 0
0 c(z) b(z) 0
0 0 0 a(z)

⎞

⎟
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⎟

⎠

K(x) =
(

t1(x) t2(x)
t3(x) t4(x)

)

Where a, b and c denote the Boltzmann weights of the a-, b- and c-
type vertices, and the entries of the K-matrix are the corner weights.

These matrices can be used combinatorially with the Kronecker
product to produce matrices whose entries correspond to certain
partition functions under particular boundary conditions.

Identities on the Lattice

Our choice of Boltzmann weights results in a number of power-
ful identities which we can exploit to probe the structure of our
partition function. Our weights permit a form of the Yang-Baxter
equation, which has pictorial and algebraic representation:
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And for corner weights, the analogous reflection equation:
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The R- and K- matrices also satisfy their own unitarity relations:
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R(1) = 1 K(x)K(x−1) = 1

Which may be used to simplify sections of our lattices.

Symmetry of the Lattice

Under this choice of weights, we may show that Zm is a symmetric
function in {xi} and {yi}. We first introduce a crossing at one edge of
the lattice, which does not alter the value of the partition function as
it must be a-type and have weight 1 under our boundary conditions.
This crossing may be brought through the lattice using the Yang-
Baxter relation as follows:
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We then freely remove the crossing, as it has weight 1.
The above shows we may freely interchange any adjacent xi↔ xi+1 or
yi ↔ yi+1, and consequently permute these variables amongst them-
selves without altering our partition function.

The same argument can be used to show that Tm is a symmetric
function in {xi}, where the reflection equation is utilised to bring a
crossing over a corner pair.

Recursions on the Lattice

We can also see that both partition functions Zm and Tm satisfy
a number of recursion relations, by properties of the lattice. For
brevity, we only sketch a proof of two key ‘specialisations’. See
Figure 2 for the exhaustive list.

One-step recursion on Zm

We consider the specialisation xi → yj . As Zm is symmetric, we may
translate xi and yj such that their intersection occurs at the bottom-
left of the lattice. Note that the spectral weight of this vertex z =
xi∕yj is 1 under this specialisation, so we utilise unitarity of R to
remove the vertex. Our boundary conditions force the remaining
vertices along the bottom row and left column to be a-type.
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All forced vertices contribute a joint Boltzmann weight of 1, and
translate the same domain wall boundary conditions into the (m−
1)×(m−1) sub-lattice. Hence we may discard of xi and yj , and find
the recursion relation:

Zm(X⃗; Y⃗ )|xi=yj =Zm−1(X⃗∖{xi}; Y⃗ ∖{yj})

Two-step recursion on Tm

Where i ≠ j, consider the specialisation xi → x−1j . By the symmetry
of Tm, we may consider x2 → x−11 without loss of generality. This
sends the spectral weight at the intersection to 1, which can then
be removed by R-unitarity. The bottom row vertices are forced as
a-type, and we use the unitarity property of K to remove the two
corner weights. This now forces all vertices in the second-bottom
row to be a-type as well.
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Again, we discard of these two rows without altering the partition
function, and find the (m− 2) × (m− 2) sub-lattice with identical
boundary conditions. Hence we have the recursion relation:

Tm(X⃗)|xi=x−1j = Tm−2(X⃗∖{xi,xj})

The Partition Functions

We find expressions for our partition functions;
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∏
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∏
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Where the function Q is symmetric in its arguments and given by:

Q(xi,xj) =
(

(1−ℎ(xi))(1−ℎ(xj))−ℎ(xi)ℎ(xj)
(1− q)xixj
pr(1− qxixj)

)

And Pf denotes the Pfaffian, which is formally defined:

Pf(A) = 1
2nn!

∑

�∈S2n

sgn(�)
n
∏

i=1
a�(2i−1),�(2i)

Where A is a skew-symmetric matrix (AT = −A), and we have
the relation Pf(A)2 = det(A). The Pfaffian behaves similarly to a
determinant —however a row operation must be done simultane-
ously to the corresponding columns (and vice-versa) in order to
preserve the skew-symmetry of A.

The Pfaffian also has a recursive definition similar to that of
Laplace expansion:

Pf(A) =
2n
∑

j=1
j≠i

(−1)i+j+1+�(i−j)aij Pf(A{̂|̂) (†)

Where � is the Heaviside step function and A{̂|̂ denotes the matrix
A with both columns and rows i and j removed.

Specialisation Result

xi → yj Zm−1(X⃗∖{xi,yj})
Zm xi → 0 0

xi → x−1j Tm−2(X⃗∖{xi,xj})

xi → 1 Tm−1(X⃗∖{xi})

xi → −1 −iTm−1(X⃗∖{xi})Tm
xi → 0 0

Figure 2. Specialisations for Zm and Tm

Construction of the Partition Functions

It turns out that the recursion relations in Figure 2 uniquely define
our partition functions. Hence, the expressions in (∗) and (∗∗) are
not derived, but constructed to meet these specialisations. We can,
however, motivate their construction.

For instance, the determinant in Zm is a natural method of encoding
the recursion relation in (1). Taking xm → ym leads to a zero in the
product term of (∗):

m−1
∏

i,j=1
(xi−yj)× (xm−ym) = 0

But creates a singularity in the (m,m) entry of our determinant:

det
[

⋱
1

xm−ym
1

xm− qym
⋱
]

→∞

Through cofactor expansion, the zero appearing in the product
causes all terms to vanish, except for this (m,m) term where the
singularity and zero cancel. We are then left with a smaller
(m−1)×(m−1) determinant with the mtℎ row and column removed,
as desired.

Similarly, the Pfaffian in Tm, when expanded using (†), encodes the
two-step recursion in (2), where all minors vanish except that with
the itℎ and jtℎ rows and columns removed.

Conclusion

In the construction of these partition functions, we have relied heav-
ily on the Yang-Baxter equation and analogous relations. These
tools originate in the study of integrable systems, and are incredibly
powerful for constructing exact solutions to mathematical problems.

Our partition functions have numerous further applications:

⦁ evaluation at a key ‘ice point’ gives the enumeration of a complex
class of matrices, known as alternating sign matrices

⦁ the joint square and triangular lattice (Figure 3) is related to
a well-studied Markov process known as the asymmetric simple
exclusion principle, which the partition functions help to analyse

Figure 3. The adjoined triangular and square lattice
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