Fluid approach to total-progeny-dependent branching processes

Introduction

A continuous-time total-progeny-dependent branch-
ing process is a 2-dimentional Markov chain,
(Z:, Xt), where Z; is the population size at time ¢
and X; is the total progeny until time ¢ (t € R™).

o b(x) and d(x): individual birth rate and death
rate depending on the current total progeny x

(r € N).
e Transition probabilities:
b(x
o(z,z) = (z+1,z+1) wp. b<x><+;(x>,

o(z,x) = (2 —1,2) wW.p. b(xglﬂ(x).

We consider two simple models with death rate
d(x) = p and birth rate:

» Model 1: by(z) =2
e Model 2: by(x) = \e 7,

where A, o, v are all constant parameters. For both

models, extinction happens with probability 1.

Objectives

e Study the stochastic process from its fluid
approrimation

e Quantities of interest:

he maximum population size
he total progeny at extinction
he extinction time
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Figure 1: Model 1: Single
trajectory, 1 = 1, A = 100.

Figure 2: Model 1: Single
trajectory, 1 = 1, A = 10000.
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Associated fluid approximation

From Darling (2], it is known that the stochastic
process (Z;, X¢) has a fluid (deterministic) approxi-
mation (y1(t), yo(t)),t > 0, which satisfies:

dy
d—tl = y1(b(y2) — d(y2)) (1)
dy
d—tZ = Y1b(y2)- (2)
In our models, we set the initial conditions to be:
y1(0) = 32(0) = 1. (3)

Single simulation trajectories and associated ODE
approximations are shown in Figures 1 and 2.

Solving ODEs

In general, by dividing Equation (1) by Equation
(2), we obtain an expression for y; in terms of yo:

dyy  b(y2) — d(yp) d(y2)
d—yg — b(yg) Yo— / dyo. (4)

Therefore, the expressions for y; in terms of vy, are:

L B :
e Model 1: y; = yo — %yz 4 %

e Model 2: y; = y» — 5™ + L

Results from ODEs

lodel 1: Ezplicit expressions are attainable for all quanities of interest in terms of the parameters

lodel 2: Only implicit expressions are available, but can be used for numerical analysis

e Solutions from ODEs give good approximations for quantities of interest except the extinction time

Estimating the mean extinction time

As y; in the ODESs never reaches 0, we approximate the mean extinction time by the time at which y; = ¢,
with € = 1. We use two approaches to construct the mean extinction time:

e Calculate t*, the time when the total progeny is one less compared to at extinction, i.e. such that

(1)

Yo(t*) = yo(00) — 1, and construct: £ ~ t* + E(max(Xy, ..., X, ), where X; ~ exp(pu).

e Assume the results from the ODESs approximate the last occurrence of y; = 2 and its corresponding time

t._o well. Construct: £2 a t._y + E(max (X7, Xy)).

(Mean) extinction time
>

/ — simulation

147 ——ODE (t__,)
———.i(1)
12 | ext
S
ext

10 | | | | |
0 2000 4000 6000 8000 10000

A
Figure 3: Model 1 extinction time vs A\, = 1.
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Figure 4: Model 2 extinction time vs A\, a = 0.01, u = 1.
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The mean extinction time vs the
parameters

Model 1: From Figure 3, we can see that the mean
extinction time increases with A.

Model 2: We can make two observations:

e Holding «, v constant, the mean extinction time
first decreases (Figure 4 shows the phase of
decrease) and then increases as we increase A,

e Holding A, p constant, the mean extinction time
decreases as we increase «.

It is interesting to note that increasing A and o has
opposite effects on the individual birth rate b(x),
but for small values of A, an increase in A and «
both reduce the mean extinction time.

Work in progress

As mentioned in the previous section, there appears
to be a minimum tor the mean extinction time ¢,
as a function A in Model 2. It is interesting to in-
vestigate:

e What value of A would attain the minimum for

texta
e How t.,; would behave as A — oc.

The experience

The vacation research scholarship has offered me the
invaluable opportunity to gain great insights from
the research side of mathematics. I would like to say
a special thank you to my supervisors, Dr. Sophie
Hautphenne and Dr. Brendan Patch, for the con-
stant help and the passionate guidance that allowed
me to have a very pleasant learning experience.
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