Fluid approach to total-progeny-dependent branching processes

Introduction

A continuous-time total-progeny-dependent branching process is a 2-dimentional Markov chain, (Z_t, X_t) , where Z_t is the population size at time t and X_t is the total progeny until time $t \ (t \in \mathbb{R}^+)$.

- b(x) and d(x): individual birth rate and death rate depending on the current total progeny x $(x \in \mathbb{N}).$
- Transition probabilities:
- $(z, x) \to (z+1, x+1)$ w.p. $\frac{b(x)}{b(x)+d(x)}$,
- $(z, x) \rightarrow (z 1, x)$ w.p. $\frac{d(x)}{b(x) + d(x)}$.

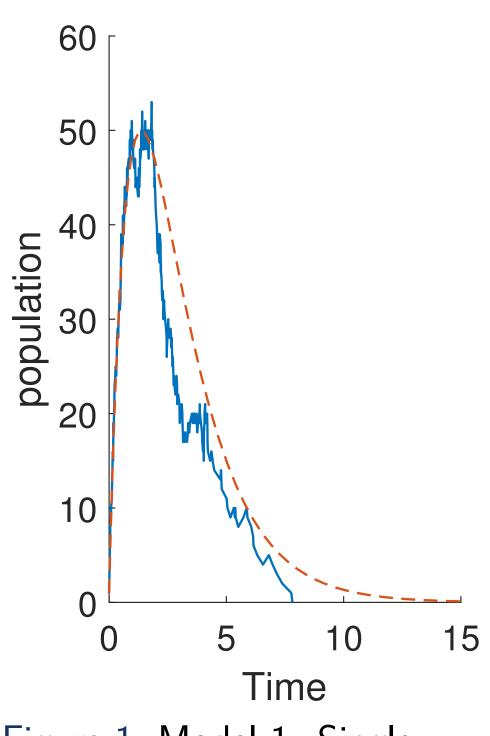
We consider two simple models with death rate $d(x) = \mu$ and birth rate:

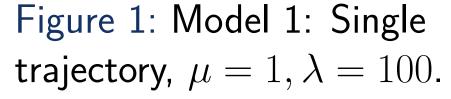
- Model 1: $b_1(x) = \frac{\lambda}{x}$
- Model 2: $b_2(x) = \lambda e^{-\alpha x}$,

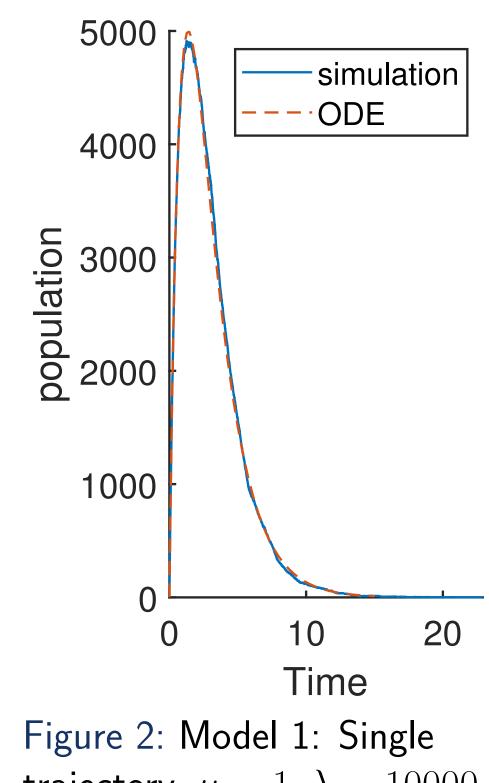
where λ, α, μ are all constant parameters. For both models, extinction happens with probability 1.

Objectives

- Study the stochastic process from its *fluid* approximation
- Quantities of interest:
- the maximum population size
- the total progeny at extinction
- the extinction time







trajectory, $\mu = 1, \lambda = 10000.$

Minyuan Li under the supervision of Sophie Hautphenne and Brendan Patch

Contact: minyuanl@student.unimelb.edu.au

Associated fluid approximation

From Darling $[2]$, it is known that the stochastic	In
process (Z_t, X_t) has a fluid (deterministic) approxi-	(2)
mation $(y_1(t), y_2(t)), t \ge 0$, which satisfies:	
dn_1	d

$$\frac{dy_1}{dt} = y_1(b(y_2) - d(y_2)) \tag{1}$$

$$\frac{dy_2}{dt} = y_1 b(y_2). \tag{2}$$

 $u\iota$ In our models, we set the initial conditions to be:

$$y_1(0) = y_2(0) = 1.$$
 (3)

Single simulation trajectories and associated ODE approximations are shown in Figures 1 and 2.

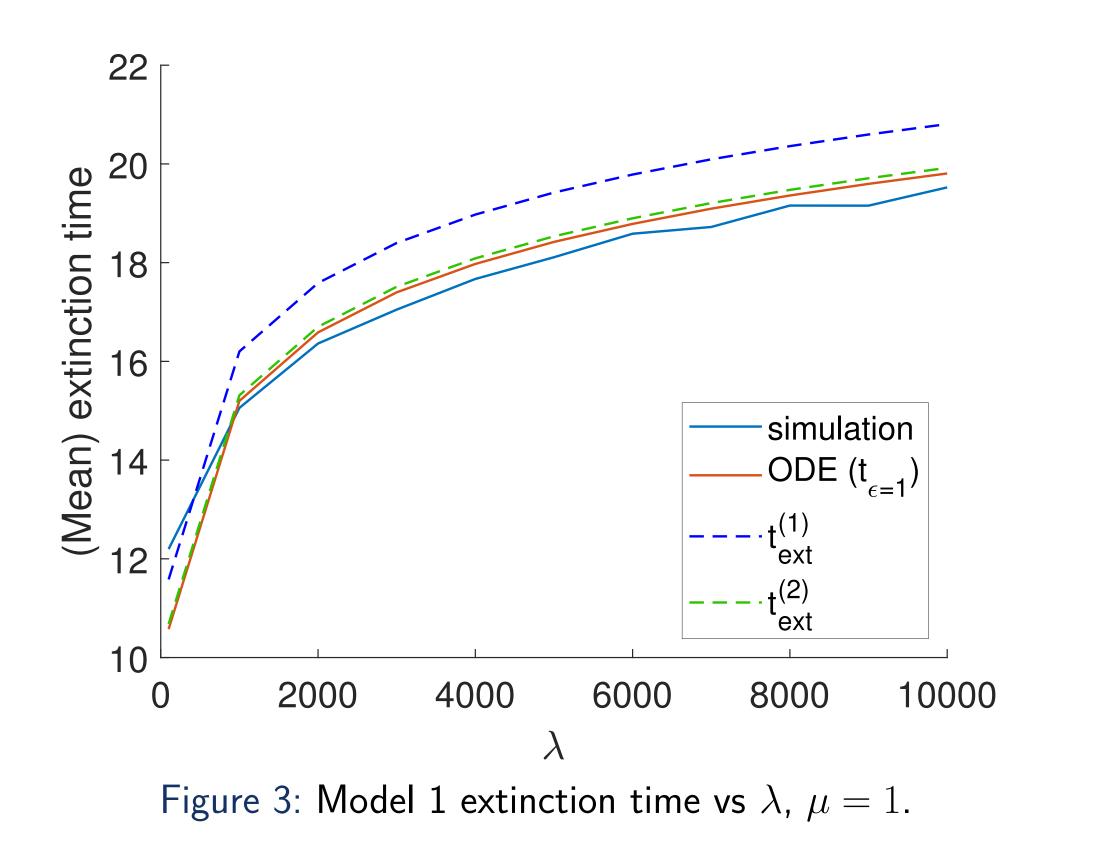
Results from ODEs

- Model 1: *Explicit expressions* are attainable for all quanities of interest in terms of the parameters
- Model 2: Only implicit expressions are available, but can be used for numerical analysis
- Solutions from ODEs give good approximations for quantities of interest except the extinction time

Estimating the mean extinction time

As y_1 in the ODEs never reaches 0, we approximate the mean extinction time by the time at which $y_1 = \varepsilon$, with $\varepsilon = 1$. We use two approaches to construct the mean extinction time:

- Calculate t^* , the time when the total progeny is one less compared to at extinction, i.e. such that $y_2(t^*) = y_2(\infty) - 1$, and construct: $t_{ext}^{(1)} \approx t^* + \mathbb{E}(\max(X_1, \dots, X_{y_1(t^*)}))$, where $X_i \sim \exp(\mu)$. • Assume the results from the ODEs approximate the last occurrence of $y_1 = 2$ and its corresponding time
- $t_{\varepsilon=2}$ well. Construct: $t_{ext}^{(2)} \approx t_{\varepsilon=2} + \mathbb{E}(\max(X_1, X_2)).$



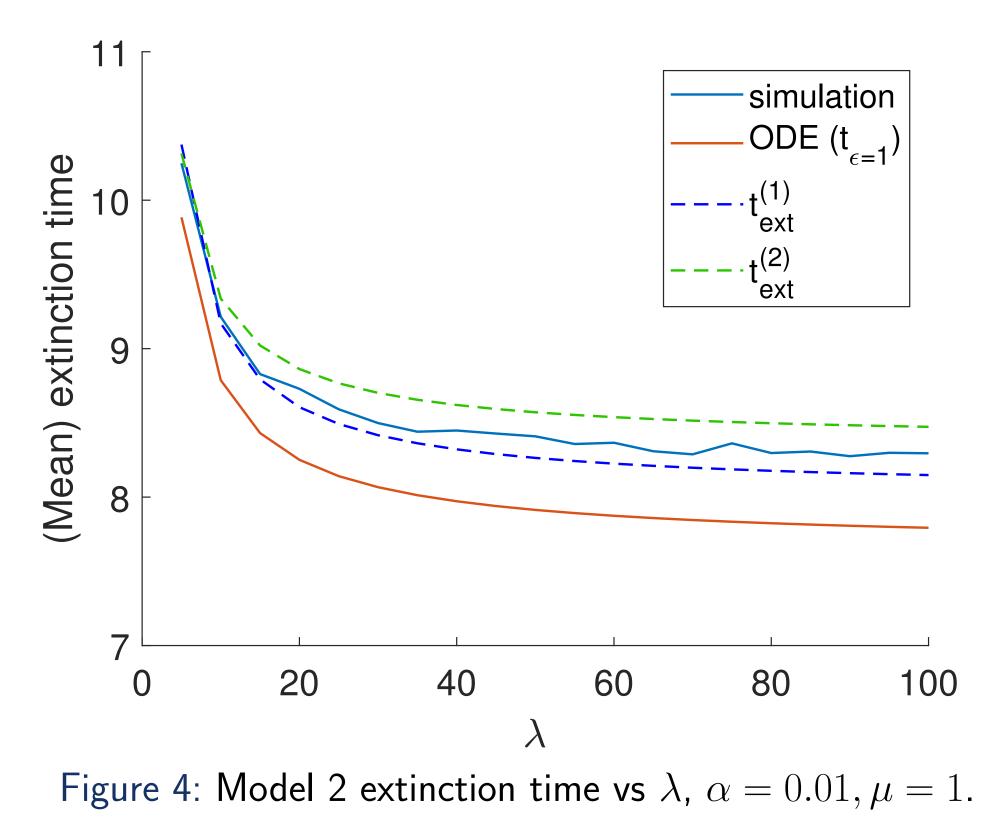
Solving ODEs

general, by dividing Equation (1) by Equation , we obtain an expression for y_1 in terms of y_2 :

dy_1 _	$b(y_2) - d(y_2)$		$\cdot d(y_2) data$	(Λ)
$\overline{dy_2}$ –	$b(y_2)$	$\implies y_1 = y_2 - \int$	$\overline{b(y_2)}^{ay_2.}$	(4)

Therefore, the expressions for y_1 in terms of y_2 are:

• Model 1: $y_1 = y_2 - \frac{\mu}{2\lambda}y_2^2 + \frac{\mu}{2\lambda}$ • Model 2: $y_1 = y_2 - \frac{\mu}{\alpha \lambda} e^{\alpha y_2} + \frac{\mu}{\alpha \lambda} e^{\alpha}$



Model 1: From Figure 3, we can see that the mean extinction time increases with λ .

• Holding α, μ constant, the mean extinction time first decreases (Figure 4 shows the phase of decrease) and then increases as we increase λ , • Holding λ, μ constant, the mean extinction time decreases as we increase α .

It is interesting to note that *increasing* λ *and* α *has opposite effects* on the individual birth rate b(x), but for small values of λ , an increase in λ and α both reduce the mean extinction time.

As mentioned in the previous section, there appears to be a *minimum* for the mean extinction time t_{ext} as a function λ in Model 2. It is interesting to investigate:

 $t_{ext},$

The vacation research scholarship has offered me the invaluable opportunity to gain great insights from the research side of mathematics. I would like to say a special thank you to my supervisors, Dr. Sophie Hautphenne and Dr. Brendan Patch, for the constant help and the passionate guidance that allowed me to have a very pleasant learning experience.

[1] Linda JS Allen. An introduction to stochastic epidemic models. In Mathematical epidemiology, pages 81–130. Springer, 2008. [2] RWR Darling. Fluid limits of pure jump markov processes: a practical guide. arXiv preprint math/0210109, 2002.

The mean extinction time vs the parameters

Model 2: We can make two observations:

Work in progress

• What value of λ would attain the minimum for

• How t_{ext} would behave as $\lambda \to \infty$.

The experience

References